Impact of Quantization for Embedded Neural Network Models on the Adversarial Robustness

Rémi BERNHARD (CEA Tech)
Pierre-Alain MOELLIC (CEA Tech)
Jean-Max DUTERTRE (MSE)

Laboratoire de Sécurité des Architectures et des Systèmes, Centre CMP, Equipe Commune CEA-Tech Mines Saint-Etienne, F-13541 Gardanne France

May 16, 2019

Overview - Context

- Neural networks: state-of-the art performances in various complex tasks (e.g., image recognition, speech translation)
 - \rightarrow Classical requirements: tremendous computation power and storage limitations
- Adversarial examples: threaten networks' integrity
 - ightarrow Malicious perturbations which aim at fooling a model
 - Szegedy et al., Intriguing properties of Neural Networks, 2013
 - Goodfellow et al., Explaining and harnessing adversarial examples, 2015

Overview - Context: ubiquitous A.I.

- Major trend: Massive efforts for models deployment and embedded ML-systems
 - \rightarrow Mobile phones, Internet of things, ...
- Major constraints: Energy/Memory/Precision depending on the platform (from typical microcontroller to complex SoC):
 - Inference: keep high speed inference (no latency issue, user-friendly apps, ...)
 - Training and storage: memory footprint, duration and efficiency

e.g: advanced STM32F4, Cortex M4, 180 MHz, 384 KBytes SRAM, 2MBytes of Flash memory

What is the impact of quantization on adversarial examples ?

Outline

- Security of Machine Learning systems
- 2 Adversarial Examples
- Adversarial Attacks
- Neural network quantization
- Experiments
- Conclusion and future work

Security of Machine Learning Systems

Security of Machine Learning systems

Threat Model

Figure: CIA threat model for a Machine Learning system

Security of Machine Learning Systems

Striking the ML pipeline

Figure: Illustration from Goodfellow et al., Defense against the dark arts: An overview of adversarial example security research and future research directions., 2018

Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

 $Adversarial\ example = Clean\ example + Adversarial\ perturbation$

Figure: NIPS 2018 Adversarial Vision Challenge

- Classification errors
- Serious threat for critical decision systems

Adversarial perturbation: usually "imperceptible"... but not always!

Physical adversarial image

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, 2018

Reasons of Existence

Many hypothesis (and a lot of open questions...):

- Linearity hypothesis
- Boundary tilting perspective
- Different manifolds
- Data intrinsic dimension
- Statistical assumption
- Non-robust / Robust features
- . . .

See: Serban et al, Adversarial Examples – A complete Characterisation of the Phenomenon, 2019

Notations

C: number of labels M_w : target classifier

 $(x,y) \in \mathbb{R}^d \times \{1,...,C\}$: observation with ground-truth label

 $M(x) \in \{1, ..., C\}$: predicted label of x by M

 $F(x) \in \mathbb{R}^{C}$: output probabilities (softmax) for x

 $f(x) \in \mathbb{R}^C$: pre-softmax (logits) for x

 $L(w, x, y) \in \mathbb{R}$: loss function of M

Pipeline:

$$\underbrace{M_w}_{model}: \underbrace{x}_{input} \to \underbrace{f(x)}_{logits} \to \underbrace{F(x)}_{softmax} \to \underbrace{M(x)}_{predicted}$$

Threat model

Adversarial goal: Fool a model at inference time

From (x, M(x)) with M(x) = y (true label), craft (x', M(x')) with

- $M(x') \neq M(x)$: untargeted attack
- M(x') = t : targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x?

$$x' = x + \alpha$$
 (α : adversarial perturbation)

 l_p norm-bounded adversarial examples: $\|\alpha\|_p \le \epsilon$ \to Classical attacks: l_2 or l_∞ (some l_0 attacks)

Threat model

Adversarial knowledge: What does the adversary know about the target model *M*?

- White-box setting: model's architecture and parameters
 - \rightarrow Derivatives of L, F and f available
- Black-box setting: model's outputs only
 - \rightarrow no knowledge of the gradients
 - \rightarrow can query M, with/without restriction

Transferability

Principle:

An adversarial example crafted to fool classifier M_1 may fool a classifier M_2

 \rightarrow For the adversary, a very powerful property

Remarks:

- Inter and Intra-techniques transferability (many types of classifiers involved: SVM, decision trees, neural networks, etc.)
- Need to train a substitute model (architecture, training data, ...)
- Many influence factors: model architecture, test set accuracy, depth,

. . .

Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM)

FGSM Attack

Principle (gradient-based, one-step, l_{∞}): linearity approximation of L(w, x, y) around x:

$$x' = x + \epsilon \operatorname{sign}\left(\frac{\partial L}{\partial x}(w, x, y)\right)$$

BIM Attack

Principle (gradient-based, iterative, I_{∞}), a multi-step version of FGSM:

$$x_0 = x$$
, $x_{n+1} = clip_{\mathcal{B}_{\infty}(x,\epsilon)} (x_n + \alpha sign(\frac{\partial L}{\partial x}(w, x_n, y)))$

With $\mathcal{B}_{\infty}(x,\epsilon)$, the ϵ I_{∞} ball around x and α , the step size.

Carlini-Wagner I₂ (CWI2)

CWI2 Attack

Principle (gradient-based, iterative, I_2): known as one of the most powerful (I_2) attacks.

$$\min_{\alpha} \quad \|\alpha\|_{2} + c K(x + \alpha, y)$$

$$s.t \quad x + \alpha \in [0, 1]$$

where:

$$K(x + \alpha, y) = \max(f_{M(x)}(x + \alpha) - \max_{j \neq M(x)} f_j(x + \alpha), 0)$$

Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA Attack

Principle (gradient-free, iterative, I_{∞}): a gradient-free attack

$$\min_{\alpha} f_{M(x)}(x+\alpha) - \max_{j \neq M(x)} f_j(x')$$

$$s.t \|\alpha\|_{\infty} < \epsilon$$

Method:

Adam optimizer with discrete gradient approximation:

$$g'(x)_i \simeq \frac{(g(x+\delta v)-g(x-\delta v))v_i^{-1}}{2\delta}$$

with $v \sim \{-1, 1\}^d$

Zeroth Order Optimization (ZOO)

ZOO Attack

Principle (gradient-free, iterative, l_2): Gradient-free softmax version of the CWI2 attack

Method:

Adam optimizer with discrete gradient approximation:

$$g'(x)_i \simeq \frac{g(x + he_i) - g(x - he_i)}{2h}$$

with e_i vector with i^{th} component valued 1

Overview of defenses

Two major defense strategies:

- Proactive defenses: adversarial training, pruning at inference, ...
- Reactive defenses: detection mechanism, input preprocessing, ...
- → Lack of certified and scalable defenses
- → Very hot topic in the ML community with numerous open questions:
 - Properly define adversarial robustness
 - Lay a common benchmark for comparisons
 - How to evaluate it? MNIST or not MNIST?

Adversarial Robustness

Gradient masking: a false Sense of Security

Principle of Gradient Masking:

Make gradients useless to craft adversarial examples

Remarks:

- Defense through obscurity (Uesato, Adversarial Risk and the Dangers of Evaluating Against Weak Attacks, 2018)
- An adversary can use a substitute model to circumvent it
- Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples,

Overview

Motivation: Neural networks on embedded systems

Quantization post-training

Several tools have been recently proposed to map full precision pre-trained models to quantized models for inference purpose:

- Android NN API
- TensorFlow Lite
- ARM-NN, CMSIS-NN
- STMCubeMX, A.I.
- \rightarrow Coarsely quantizing (some) weights into usually no more than INT8.

More advanced methods propose clustering methods, information theoretical vector quantization methods...

Quantization-aware training

Principle:

Learn a model with quantized weights and/or activation values during the training process

Issues:

- Manage non-differentiability issues of quantization function during backward pass
- Training can be difficult

Quantization-aware training

Binary Neural Networks

SoA approaches: Binary Net, Courbariaux, Bengio et al. (2015 & 2016)

weights and activations are binarized for the forward pass

$$w_b = sign(w), \ a_b^k = sign(a^k)$$

- Inference: only bitcount and xnor operations
- Binarization is not differentiable. Trick: use of a Straight Through Estimator: (STE, Bengio et al., 2013) at the backward pass

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial w_b} \frac{\partial w_b}{\partial w} \approx \frac{\partial L}{\partial w} \Big|_{w = w_b} \mathbf{1}_{|w| \le 1}$$

Quantization-aware training

Low bit-width Neural Networks

SoA approaches: Dorefa Net, Zhou et al. 2016

n-bit width quantization

- Train neural networks with low-bitwidth:
 - weights
 - activations
 - gradients
- STE for the backward pass
- Inference: usage of a bit convolution kernel

Quantization-aware training

Figure: Guo et al., A Survey on Methods and Theories of Quantized Neural Networks, 2018

Previous Work

Massive research efforts on the topic (both attacks and defenses) with associated benchmarks and competitions (NIPS Adversarial Vision Challenge) but almost only on full-precision models.

Existing works:

- Galloway, 2017 (Attacking binarized neural networks): claims natural robustness with binarization. But, MNIST only, stochastic quantization
- Lin, 2019 (Efficiency Meets Robustness): FGSM attack only, white-box setting only (no transferability analysis)
- ullet Khalil, 2018 (*Combinatorial attacks on binarized networks*) o not scalable on big data sets

Setup

Data sets:

- SVHN (training/test: 73,257/26,032)
- CIFAR10 (training/test: 50,000/10,000)

Models:

One full-precision (32-bit float) model for each data set (same CNN architecture as in Courbariaux et al., 2016)

Quantized models:

- Activation and Weight / Weight quantization: 1,2,3,4 bits
- Techniques: Courbariaux et al. (2015, 2016), Zhou et al. (2016)

Computing environment:

- CPU: Intel Xeon, 2.1 GHz (12 cores)
- GPU: NVIDIA GTX 1080 Ti (11 Gb, 3584 CUDA cores)

Attacks

Fast Gradient Sign Method (FGSM)

Basic Iterative Method (BIM): iterative FGSM

Carlini-Wagner /2 (CWI2)

 SPSA: Gradient free I_{∞} attack

5 ZOO: Gradient-free version of **CWI2**

	FGSM	BIM	CWL2	SPSA	Z00
Gradient-based	✓	✓	✓		
Gradient-free				✓	✓
one-step	✓				
iterative		✓	✓	✓	✓
I_{∞}	√	✓		✓	
<i>I</i> ₂			✓		✓

Metrics

Adversarial accuracy: accuracy of the model on adversarial examples I_p adversarial distortion:

$$||x' - x||_p = \left(\sum_{i=1}^m |x_i' - x_i|^p\right)^{\frac{1}{p}}$$

		CIFA	R10		SVHN					
Full-precision		0.89				0.96				
Bitwidth	1	2	3	4	1	2	3	4		
Full quantization	0.79	0.87	0.88	0.88	0.89	0.95	0.95	0.95		
Weight quantization	0.88	0.88	0.88	0.88	0.96	0.95	0.96	0.95		

Table: Models accuracy on test set

Direct attacks, fully-quantized models

	CIFAR10							SVHN						
	Float model $(32\text{-}bit)$			Binarized models $(1-bit)$			Float model $(32\text{-}bit)$			Binarized models $(1-bit)$				
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}		
FGSM	0.12	1.65	0.03	0.66	1.65	0.03	0.29	1.66	0.03	0.78	1.64	0.03		
BIM	0.07	1.17	0.03	0.66	1.01	0.03	0.05	1.16	0.03	0.79	1.0	0.03		
CW12	0.03	0.58	0.04	0.11	0.78	0.08	0.02	0.64	0.66	0.06	1.02	0.1		

1) Fully binarized neural networks:

- Apparent robustness against FGSM and BIM attacks
- No robustness increase against CWI2 attack
- ightarrow No additional robustness against gradient based attacks

Direct attacks, fully-quantized models

	CIFAR10							SVHN						
	Float model $(32\text{-}bit)$			Quantized models $(1,2,3,4-bit)$			Float model (32-bit)			Quantized models $(1,2,3,4-bit)$				
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}		
BIM 0.07				0.66	1.01	0.03	0.05	1.16	0.03	0.79	1.0	0.03		
	0.07 1.1	1.17	0.03	0.06	1.14	0.03				0.11	1.13	0.03		
		1.17	0.03	0.11	1.17	0.03				0.11	1.13	0.03		
				0.06	1.14	0.03				0.1	1.13	0.03		
				0.16	1.31	0.03				0.4	1.32	0.03		
SPSA 0.0	1.37	0.03	0.0	1.34	0.03	0.01	1.38	0.03	0.14	1.34	0.03			
	0.0	1.37	0.03	0.0	1.36	0.03	0.01	1.38	0.05	0.07	1.35	0.03		
				0.0	1.36	0.03				0.04	1.37	0.03		

2) Fully quantized neural networks:

BIM (gradient-based, I_{∞}) less efficient than SPSA (gradient-free, I_{∞})

ightarrow Gradient masking

Direct attacks, fully-quantized models

	CIFAR10							SVHN						
	Float model $(32\text{-}bit)$		Quantized models $(1,2,3,4-bit)$			Fl	oat moo (32-bit)		Quantized models $(1,2,3,4-bit)$					
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}		
CW12 0				0.11	0.78	0.08		0.64	0.06	0.06	1.02	0.1		
	0.03	0.58	8 0.04	0.06	0.6	0.04	0.02			0.03	0.67	0.07		
				0.09	0.55	0.04				0.02	0.66	0.07		
				0.05	0.5	0.04				0.02	0.68	0.07		
				0.56	0.1	0.05		0.91		0.82	0.07	0.05		
ZOO 0.	0.0 0.72	0.72	0.09	0.83	0.13	0.06	0.0		0.11	0.93	0.1	0.06		
		0.72	0.09	0.76	0.24	0.07	0.0		0.11	0.94	0.11	0.05		
				0.73	1.09	0.14				0.93	0.38	0.1		

3) Fully quantized neural networks:

- Quantization alters ZOO objective function (\simeq 0 or >> 1) \rightarrow ZOO fails, CWI2 succeeds (thanks to STE)
- No effect from quantization
 - \rightarrow ZOO performs better (I_2 distortion)
- ightarrow Gradient masking

Transfer attacks, CIFAR10

Poor transferability capacities (particularly for CWI2)

Conclusions on transferability: Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial effect

ullet activation shift: $\emph{a}_1^j(x'){>}\emph{a}_2^j(x')
ightarrow \emph{a}_1^{j,\mathbf{q}}(x'){=}\emph{a}_2^{j,\mathbf{q}}(x')$

2 different activation values are mapped to the same quantization bucket.

weight shift:

$$f_1^j(x, w_1) > f_2^j(x, w_1) \ f_1^j(\mathbf{x'}, w_1) < f_2^j(\mathbf{x'}, w_1) \to f_1^j(\mathbf{x'}, w_1^{\mathbf{q}}) > f_2^j(\mathbf{x'}, w_1^{\mathbf{q}})$$

Conclusions on transferability: Gradient misalignment

Gradient misalignment:

Cosinus similarity values near $0 \rightarrow$ near orthogonal gradients Hard to transfer from/to fully binarized networks

39 / 41

Conclusion and future work

Conclusion and future work

Take-away:

- Complete study of quantized models vulnerabilities against adversarial examples, under various threat models
- Detection of some gradient masking issue
- Quantization is not a robust "natural" defense when facing advanced attacks
- But, interestingly, gradient misalignment issues and quantization shift phenomenon cause poor transferability

Future & ongoing works:

• How to improve robustness of quantized models specifically?