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Overview — Context

@ Neural networks: state-of-the art performances in various complex
tasks (e.g., image recognition, speech translation)
— Classical requirements: tremendous computation power and
storage limitations

@ Adversarial examples: threaten networks' integrity
— Malicious perturbations which aim at fooling a model

o Szegedy et al., Intriguing properties of Neural Networks, 2013
o Goodfellow et al., Explaining and harnessing adversarial examples, 2015
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Overview — Context: ubiquitous A.l.

@ Major trend: Massive efforts for models deployment and embedded
ML-systems
— Mobile phones, Internet of things, ...

e Major constraints: Energy/Memory/Precision depending on the
platform (from typical microcontroller to complex SoC):
e Inference
e Training and storage

Figure: STM32F4, Cortex M4

What is the impact of quantization on adversarial examples ?
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Outline

© Security of Machine Learning systems
© Adversarial Examples

© Adversarial Attacks

@ Neural network quantization

© Experiments

@ Conclusion and future work
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Security of Machine Learning Systems J
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Security of Machine Learning systems
Threat Model
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Figure: CIA threat model for a Machine Learning system
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Security of Machine Learning Systems
Striking the ML pipeline
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Figure: Illustration from Goodfellow et al., Defense against the dark arts: An
overview of adversarial example security research and future research directions.,
2018
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Adversarial Examples

Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example 4+ Adversarial perturbation

Original image Adversarial image
.
o) ) L
wo‘\i Pl“i ©
< . .
; : Ostrich

(small) adversarial perturbation
created by attack

Figure: NIPS 2018 Adversarial Vision Challenge

o Classification errors
@ Serious threat for critical decision systems
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Adversarial Examples

Adversarial perturbation: usually "imperceptible"... but not always!

Physical adversarial image

"Stop" "Speed Limit 45"

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual
Classification, 2018
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Adversarial Examples

Reasons of Existence

Many hypotheses (and a lot of
open questions...):

Linearity hypothesis
Boundary tilting perspective

Different manifolds

Statistical assumption Model ostrich space | 7

| d

°
°
°
@ Data intrinsic dimension 'Y
°
°

Non-robust / Robust 77777 ") . °
features /

See: Serban et al, Adversarial Examples — A complete Characterisation of
the Phenomenon, 2019
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Adversarial Examples

Notations

C: number of labels

M,,: target classifier

(x,y) € R? x {1, ..., C}: observation with ground-truth label
M(x) € {1, ..., C}: predicted label of x by M

F(x) € R¢: output probabilities (softmax) for x

f(x) € RC: pre-softmax (logits) for x

L(w,x,y) € R: loss function of M

Pipeline:

model Input logits softmax predicted
label
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Adversarial Examples
Threat model

Adversarial goal: Fool a model at inference time

From (x, M(x)) with M(x) = y (true label), craft (x’, M(x")) with

M(x") # M(x) :untargeted attack
o M(x') =t :targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x 7

x" = x + « (a: adversarial perturbation)

I norm-bounded adversarial examples: [laf|, <€
— Classical attacks: h or I (some Iy attacks)
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Adversarial Examples
Threat model

Adversarial knowledge: What does the adversary know about the target

model M?

o White-box setting: model's architecture and parameters
— Derivatives of L, F and f available

@ Black-box setting: model’s outputs only
— no knowledge of the gradients
— can query M, with/without restriction
— probability outputs (F(x)) or label output (M(x))
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Adversarial Examples
Transferability

Principle:
An adversarial example crafted to fool classifier My may fool a classifier M,

— For the adversary, a very powerful property

Remarks:

@ Inter and Intra-techniques transferability (many types of classifiers
involved: SVM, decision trees, neural networks, etc.)
@ Need to train a substitute model (architecture, training data, ...)

@ Many influence factors: model architecture, test set accuracy, depth,
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Adversarial Attacks
Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM)

FGSM Attack
Principle (gradient-based, one-step, I, ): linearity approximation of
L(w, x, y) around x:

x' = x + esign (%(W,x,y))

BIM Attack
Principle (gradient-based, iterative, /), a multi-step version of FGSM:

X0 = X, Xn+1 = clipp__(x,c) (Xn + asign(%(w,xn,y)))

With Boo(x,€), the € I ball around x and «, the step size.
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Adversarial Attacks
Carlini-Wagner L (CWI2)

CWI2 Attack

Principle (gradient-based, iterative, ): known as one of the most
powerful (h) attacks.
min [lall, + € K(x+a.y)
st x+ael0,1]
where :

K(x + a,y) = max(fiy(x +a) — max fi(x+ «),0
(x+ 0,y) = max(fsgo(x + @) ~ max. f(x+a).0)
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Adversarial Attacks

Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA Attack
Principle (gradient-free, iterative, I): a gradient-free attack

min o (x +a) — max fi(x
i fupo () = max £(x)

s.t]all <e€

Method:
Adam optimizer with discrete gradient approximation:

ooy (g(x+0v) — g(x —dv))vi
g (x)i ~ 5

with v ~ {—1,1}¢
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Adversarial Attacks
Zeroth Order Optimization (ZOO)

Z00 Attack

Principle (gradient-free, iterative, h): Gradient-free softmax version of the
CWI2 attack

Method:
Adam optimizer with discrete gradient approximation:

g(x + he;) — g(x — heyp)
2h

with e; vector with it component valued 1

g'(x)i =~
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Adversarial Robustness

Gradient masking: a false Sense of Security

Principle of Gradient Masking:
Make gradients useless to craft adversarial examples

Remarks:

@ Defense through obscurity (Uesato, Adversarial Risk and the Dangers
of Evaluating Against Weak Attacks, 2018)

@ An adversary can use a substitute model to circumvent it

@ Gradient-free attacks, decision-based attacks, ...

(a) Defended model (b) Substitute model
h(z*) e e enn-- -9 IQ—\
oL LT~
hz) |- —<osd ! g
z z* r z*
- -
T T

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples,
openAl blog, 2017
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Neural Networks Quantization J
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Neural networks quantization

Quantization post-training

Several tools have been recently proposed to map full precision pre-trained
models to quantized models for inference purpose:

@ Android NN API

@ TensorFlow Lite

e ARM-NN, CMSIS-NN
o STMCubeMX. ALl

— Coarsely quantizing (some) weights into — usually — no more than INT8.

More advanced methods propose clustering methods, information
theoretical vector quantization methods...
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Neural networks quantization

Quantization-aware training

Principle:

Learn a model with quantized weights and/or activation values during the
training process

Issues:

@ Manage non-differentiability issues of quantization function during
backward pass

@ Training can be difficult
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Neural networks quantization

Quantization-aware training

Binary Neural Networks
SoA approaches: Binary Net, Courbariaux, Bengio et al. (2015 & 2016)

@ weights and activations are binarized for the forward pass
wp = sign(w), af = sign(a¥)
@ Inference: only bitcount and xnor operations
@ Binarization is not differentiable. Trick: use of a Straight Through
Estimator: (STE, Bengio et al., 2013) at the backward pass
oL JL ow, _ 0L

A = e g 1
ow  Owp Ow  Ow lw=w, IS
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Neural networks quantization

Quantization-aware training

Low bit-width Neural Networks
SoA approaches: Dorefa Net, Zhou et al. 2016

n-bit width quantization

@ Train neural networks with low-bitwidth:

Q weights
@ activations
@ gradients

@ STE for the backward pass

@ Inference: usage of a bit convolution kernel
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Neural networks quantization
Quantization-aware training
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Figure: Guo et al., A Survey on Methods and Theories of Quantized Neural
Networks, 2018
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Previous Work

Massive research efforts on the topic (both attacks and defenses) with
associated benchmarks and competitions (NIPS Adversarial Vision
Challenge) but almost only on full-precision models.

Existing works bridging quantization and adversarial robustness:

e Galloway, 2017 (Attacking binarized neural networks): claims natural
robustness with binarization. But, MNIST only, stochastic
quantization

e Khalil, 2018 (Combinatorial attacks on binarized networks) — not
scalable on big data sets

e Lin, 2019 (Efficiency Meets Robustness): FGSM attack only,
white-box setting only (no transferability analysis)
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Experiments
Setup

Data sets:

o SVHN (73,257/26,032)
e CIFARI10 (50,000,10,000)

Models:
One full-precision (32-bit float) model for each data set (same CNN
architecture as in Courbariaux et al., 2016)
Quantized models :

@ Activation and Weight / Weight quantization: 1,2,3,4 bits

e Techniques: Courbariaux et al. (2015, 2016), Zhou et al. (2016)
Computing environment:

e CPU: Intel Xeon, 2.1 GHz (12 cores)
e GPU: 2x NVIDIA GTX 1080 Ti (11 Gb, 3584 . CUDA cores)
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Experiments

Training results

CIFAR10 SVHN
Full-precision 0.89 0.96
Bitwidth 1 2 3 4 1 2 3 4
Full quantization 0.79] 0.87| 0.88| 0.88| 0.89| 0.95| 0.95| 0.95
Weight quantization | 0.88 | 0.88| 0.88 | 0.88| 0.96 | 0.95| 0.96 | 0.95

Table: Models accuracy on test set

During training, quantization acts as a:
@ constraint

@ regularizer
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Experiments

Attacks and metrics

FGSM BIM CWL2 SPSA Z00
Gradient-based v v v
Gradient-free v v
one-step v
iterative v v v v
Iso v v v
h v v

Adversarial accuracy: accuracy of the model on adversarial examples

Ip adversarial distortion:

1
I _ il I . |P P
b = xll, = { 22 % = xil
i=1
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Experiments

Direct attacks, fully-quantized models

CIFAR10 SVHN
Float model Binarized models Float model Binarized models
(32-bit) (1-bit) (52-bit) (1-bit)
acc ly loo acc ly loo acc ly loo acc ly loso
FGSM 0.12 1.65 0.03 0.66 1.65 0.03 | 0.29 1.66 0.03 | 0.78 1.64 0.03
BIM  0.07 1.17 0.03 | 0.66 1.01 0.03]0.05 116 0.03 079 1.0 0.03
CWI2 0.03 0.58 0.04 0.11 0.78 0.08 | 0.02 0.64 0.66 | 0.06 1.02 0.1

1) Fully binarized neural networks:

@ Apparent robustness against FGSM and BIM attacks

@ No robustness increase against CWI2 attack

— No additional robustness against gradient based attacks
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Experiments

Direct attacks, fully-quantized models

CIFAR10 SVHN

Float model Quantized models Float model Quantized models

(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)
acc ly loo acc Iy loo acc 1% lo acc Iy loo
0.66 1.01 0.03 0.79 1.0 0.03
, , 0.06 1.14 0.03 - 0.11 1.13 0.03
BIM 0.07 117 0.03 011 117 0.03 0.05 1.16 0.03 011 113 003
0.06 1.14 0.03 0.1 1.13 0.03
0.16 1.31 0.03 0.4 132 0.03
. 0.0 134 0.03 0.14 1.34 0.03
SPSA 0.0 1.37 0.03 0.0 136 003 0.01 138  0.03 0.07 135 003
0.0 1.36 0.03 0.04 1.37 0.03

2) Fully quantized neural networks:
BIM (gradient-based, /) less efficient than SPSA (gradient-free, /)
— Gradient masking
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Experiments

Direct attacks, fully-quantized models

CIFAR10 SVHN
Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (32-bit) (1,2,3,4-bit)
acc ly loo acc Iy loo acc Iy loo acc ly loo
0.08 . 0.1
WAT1e ’ & ). 0.04 . . ). 0.07
CWI2 0.03 0.58 0.04 . 0.04 0.02 0.64 0.06 . 0.07
) 0.04 ) 0.07
). 0.05 2 ). 0.05
).13 0.06 ). 0.06
C 9
Z00 0.0 0.72 0.09 . 0.07 0.0 0.91 0.11 . 0.05
0.14 ) 0.1

3) Fully quantized neural networks:

e Quantization alters ZOO objective function (~ 0 or >> 1)
— Z0O fails, CWI2 succeeds (thanks to STE)

@ No effect from quantization
— Z0OO0O performs better (/, distortion)

— Gradient masking
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Experiments

Transfer attacks, CIFAR10

Poor transferability capacities
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Experiments

Conclusions on transferability: Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial
effect

@ activation shift:

A (x)>a(x) = (x)=a(x)

@ weight shift:
o w) > (x, wa), A (x, wi)>H (x, wi)
R(X, wi)<B(X',wi) = (X, u])=f (X", w})
Weight quantization can cancel adversarial effect
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Experiments

Conclusions on transferability: Gradient misalignment

Gradient misalignment:
Cosinus similarity values near 0 — near orthogonal gradients
Hard to transfer from/to fully binarized networks
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Conclusion and future work

Complete study of quantized models vulnerabilities against adversarial
examples, under various threat models

Take-away:

@ Detection of some gradient masking issue

— Quantization is not a robust "natural" defense when facing
advanced attacks

@ But, interestingly, gradient misalignment issues and quantization shift
phenomenon cause poor transferability

Ongoing works:
@ Develop an ensemble/quantization based defense exploiting low

transferability
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