Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks

Rémi BERNHARD (CEA Tech) Pierre-Alain MOELLIC (CEA Tech) Jean-Max DUTERTRE (MSE)

Laboratoire de Sécurité des Architectures et des Systèmes, Centre CMP, Equipe Commune CEA-Tech Mines Saint-Etienne, F-13541 Gardanne France

October 16, 2019

Rémi Bernhard

PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019

4 AR & 4 E & 4 E &

1 / 39

- Neural networks: state-of-the art performances in various complex tasks (e.g., image recognition, speech translation)
 → Classical requirements: tremendous computation power and storage limitations
- Adversarial examples: threaten networks' integrity
 - \rightarrow Malicious perturbations which aim at fooling a model
 - Szegedy et al., Intriguing properties of Neural Networks, 2013
 - Goodfellow et al., Explaining and harnessing adversarial examples, 2015

周 ト イ ヨ ト イ ヨ ト

Overview - Context: ubiquitous A.I.

- Major trend: Massive efforts for models deployment and embedded ML-systems
 - \rightarrow Mobile phones, Internet of things, \ldots
- **Major constraints**: Energy/Memory/Precision depending on the platform (from typical microcontroller to complex SoC):
 - Inference
 - Training and storage

Figure: STM32F4, Cortex M4

What is the impact of quantization on adversarial examples ?

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 3 / 39

- Security of Machine Learning systems
- **2** Adversarial Examples
- Adversarial Attacks
- Neural network quantization
- Section 2 Constraints
- **O Conclusion and future work**

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 4 / 39

Security of Machine Learning Systems

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 5 / 39

э

Security of Machine Learning systems

Threat Model

Figure: CIA threat model for a Machine Learning system

Rémi Bernhard

PHYSIC 2019 Quantization and Adversarial Machine Learning Oct

October 16, 2019 6 / 39

< □ > < □ > < □ > < □ > < □ > < □ >

Security of Machine Learning Systems

Striking the ML pipeline

Figure: Illustration from Goodfellow et al., *Defense against the dark arts: An overview of adversarial example security research and future research directions.*, 2018

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 8 / 39

< 47 ▶

э

Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Figure: NIPS 2018 Adversarial Vision Challenge

- Classification errors
- Serious threat for critical decision systems

Rémi Bernhard

PHYSIC 2019 Quantization and Adversarial Machine Learning

October 16, 2019 9 / 39

Adversarial perturbation: usually "imperceptible"... but not always!

Physical adversarial image

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, 2018

▶ < ∃ ▶</p>

Reasons of Existence

Many hypotheses (and a lot of open questions...):

- Linearity hypothesis
- Boundary tilting perspective
- Different manifolds
- Data intrinsic dimension
- Statistical assumption
- Non-robust / Robust features

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

See: Serban et al, Adversarial Examples – A complete Characterisation of the Phenomenon, 2019

Rémi Bernhard

11 / 39

Notations

C: number of labels M_w : target classifier $(x, y) \in \mathbb{R}^d \times \{1, ..., C\}$: observation with ground-truth label $M(x) \in \{1, ..., C\}$: predicted label of *x* by *M* $F(x) \in \mathbb{R}^C$: output probabilities (softmax) for *x* $f(x) \in \mathbb{R}^C$: pre-softmax (logits) for *x* $L(w, x, y) \in \mathbb{R}$: loss function of *M*

Pipeline:

Threat model

Adversarial goal: Fool a model at inference time

From (x, M(x)) with M(x) = y (true label), craft (x', M(x')) with

M(x') ≠ M(x) :untargeted attack
 M(x') = t :targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

 $x' = x + \alpha$ (α : adversarial perturbation)

 l_p norm-bounded adversarial examples: $\|\alpha\|_p \le \epsilon$ \rightarrow Classical attacks: l_2 or l_{∞} (some l_0 attacks)

(4) 周 ト 4 日 ト 4 日 ト - 日

Threat model

Adversarial knowledge: What does the adversary know about the target model *M*?

- White-box setting: model's architecture and parameters
 → Derivatives of L, F and f available
- **Black-box** setting: model's outputs only
 - \rightarrow no knowledge of the gradients
 - \rightarrow can query M, with/without restriction
 - \rightarrow probability outputs (*F*(*x*)) or label output (*M*(*x*))

Rémi Bernhard

14 / 39

A 回下 A 三下 A 三下

Transferability

Principle:

An adversarial example crafted to fool classifier M_1 may fool a classifier M_2

 \rightarrow For the adversary, a very powerful property

Remarks:

- Inter and Intra-techniques transferability (many types of classifiers involved: SVM, decision trees, neural networks, etc.)
- Need to train a substitute model (architecture, training data, ...)
- Many influence factors: model architecture, test set accuracy, depth, ...

A 回下 A 三下 A 三下

Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM)

FGSM Attack

Principle (gradient-based, one-step, I_{∞}): linearity approximation of L(w, x, y) around x:

$$x' = x + \epsilon \operatorname{sign}\left(\frac{\partial L}{\partial x}(w, x, y)\right)$$

BIM Attack

Principle (gradient-based, iterative, l_{∞}), a multi-step version of FGSM:

$$x_0 = x$$
, $x_{n+1} = clip_{\mathcal{B}_{\infty}(x,\epsilon)} (x_n + \alpha sign(\frac{\partial L}{\partial x}(w, x_n, y)))$

With $\mathcal{B}_{\infty}(x,\epsilon)$, the ϵI_{∞} ball around x and α , the step size.

Carlini-Wagner I₂ (CWI2)

CWI2 Attack

Principle (gradient-based, iterative, l_2): known as one of the most powerful (l_2) attacks.

$$\min_{\alpha} \quad \|\alpha\|_2 + c K(x + \alpha, y)$$

$$s.t \quad x + \alpha \in [0, 1]$$

where :

$$K(x + \alpha, y) = \max(f_{M(x)}(x + \alpha) - \max_{j \neq M(x)} f_j(x + \alpha), 0)$$

Rémi Bernhard

17 / 39

Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA Attack

Principle (gradient-free, iterative, I_{∞}): a gradient-free attack

$$\min_{\alpha} \quad f_{\mathcal{M}(x)}(x+\alpha) - \max_{j \neq \mathcal{M}(x)} f_j(x') \\ s.t \|\alpha\|_{\infty} < \epsilon$$

Method:

Adam optimizer with discrete gradient approximation:

$$g'(x)_i \simeq rac{(g(x+\delta v)-g(x-\delta v))v_i^{-1}}{2\delta}$$

with $\mathbf{v} \sim \{-1,1\}^d$

Rémi Bernhard

18 / 39

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Zeroth Order Optimization (ZOO)

ZOO Attack

Principle (gradient-free, iterative, l_2): Gradient-free softmax version of the CWI2 attack

Method:

Adam optimizer with discrete gradient approximation:

$$g'(x)_i \simeq rac{g(x+he_i)-g(x-he_i)}{2h}$$

with e_i vector with i^{th} component valued 1

Adversarial Robustness

Gradient masking: a false Sense of Security

Principle of Gradient Masking: Make gradients useless to craft adversarial examples

Remarks:

- Defense through obscurity (Uesato, Adversarial Risk and the Dangers of Evaluating Against Weak Attacks, 2018)
- An adversary can use a substitute model to circumvent it
- Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples, openAl blog. 2017 Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 20 / 39

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 21 / 39

Quantization post-training

Several tools have been recently proposed to map full precision pre-trained models to quantized models for inference purpose:

- Android NN API
- TensorFlow Lite
- ARM-NN, CMSIS-NN
- STMCubeMX. A.I.

 \rightarrow Coarsely quantizing (some) weights into – usually – no more than INT8. More advanced methods propose clustering methods, information theoretical vector quantization methods...

4月 5 4 日 5 4 日 5

Quantization-aware training

Principle:

Learn a model with quantized weights and/or activation values during the training process

Issues:

- Manage non-differentiability issues of quantization function during backward pass
- Training can be difficult

伺 ト イ ヨ ト イ ヨ ト

Quantization-aware training

Binary Neural Networks

SoA approaches: Binary Net, Courbariaux, Bengio et al. (2015 & 2016)

• weights and activations are binarized for the forward pass

$$w_b = sign(w), \ a_b^k = sign(a^k)$$

- Inference: only bitcount and xnor operations
- Binarization is not differentiable. Trick: use of a *Straight Through Estimator*: (STE, Bengio et al., 2013) at the backward pass

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial w_b} \frac{\partial w_b}{\partial w} \approx \frac{\partial L}{\partial w}\Big|_{w=w_b} \mathbf{1}_{|w| \le 1}$$

Rémi Bernhard

24 / 39

Quantization-aware training

Low bit-width Neural Networks

SoA approaches: Dorefa Net, Zhou et al. 2016

n-bit width quantization

- Train neural networks with low-bitwidth:
 - weights
 - 2 activations
 - gradients
- STE for the backward pass
- Inference: usage of a bit convolution kernel

Rémi Bernhard

Quantization-aware training

Figure: Guo et al., A Survey on Methods and Theories of Quantized Neural Networks, 2018

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 26 / 39

4 AR & 4 E & 4 E &

Massive research efforts on the topic (both attacks and defenses) with associated benchmarks and competitions (*NIPS Adversarial Vision Challenge*) **but almost only on full-precision models**.

Existing works bridging quantization and adversarial robustness:

- Galloway, 2017 (*Attacking binarized neural networks*): claims natural robustness with binarization. But, MNIST only, stochastic quantization
- Khalil, 2018 (Combinatorial attacks on binarized networks) \rightarrow not scalable on big data sets
- Lin, 2019 (*Efficiency Meets Robustness*): FGSM attack only, white-box setting only (no transferability analysis)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 28 / 39

<ロト < 四ト < 三ト < 三ト

3

Setup

Data sets:

- SVHN (73,257/26,032)
- CIFAR10 (50,000/10,000)

Models:

One full-precision (32-bit float) model for each data set (same CNN architecture as in Courbariaux et al., 2016) Quantized models :

- Activation and Weight / Weight *quantization*: 1,2,3,4 bits
- Techniques: Courbariaux et al. (2015, 2016), Zhou et al. (2016)

Computing environment:

- CPU: Intel Xeon, 2.1 GHz (12 cores)
- GPU: 2x NVIDIA GTX 1080 Ti (11 Gb, 3584 CUDA cores) = → = → <

Rémi Bernhard

PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019

29 / 39

Training results

		CIFA	AR10		SVHN					
Full-precision	0.89 0.96									
Bitwidth	1	2	3	4	1	2	3	4		
Full quantization	0.79	0.87	0.88	0.88	0.89	0.95	0.95	0.95		
Weight quantization	0.88	0.88	0.88	0.88	0.96	0.95	0.96	0.95		

Table: Models accuracy on test set

During training, quantization acts as a:

- constraint
- regularizer

4 E b

э

Attacks and metrics

	FGSM	BIM	CWL2	SPSA	Z00
Gradient-based	\checkmark	\checkmark	\checkmark		
Gradient-free				\checkmark	\checkmark
one-step	\checkmark				
iterative		\checkmark	\checkmark	\checkmark	\checkmark
I_{∞}	\checkmark	\checkmark		\checkmark	
<i>I</i> ₂			\checkmark		\checkmark

Adversarial accuracy: accuracy of the model on adversarial examples *I_p* adversarial **distortion**:

$$||x'-x||_p = \left(\sum_{i=1}^m |x'_i - x_i|^p\right)^{\frac{1}{p}}$$

Rémi Bernhard

b 4 E b 4 E b

Direct attacks, fully-quantized models

			CIFA	R10		SVHN						
	Float model $(32\text{-}bit)$			Binarized models $(1-bit)$			F	loat mo (32-bit)	del	Binarized models $(1-bit)$		
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}
FGSM	0.12	1.65	0.03	0.66	1.65	0.03	0.29	1.66	0.03	0.78	1.64	0.03
BIM	0.07	1.17	0.03	0.66	1.01	0.03	0.05	1.16	0.03	0.79	1.0	0.03
CWl2	0.03	0.58	0.04	0.11	0.78	0.08	0.02	0.64	0.66	0.06	1.02	0.1

1) Fully binarized neural networks:

- Apparent robustness against FGSM and BIM attacks
- No robustness increase against CWI2 attack
- \rightarrow No additional robustness against gradient based attacks

Direct attacks, fully-quantized models

			CIFA	R10		SVHN							
	Float model (32-bit)			Quantized models $(1,2,3,4-bit)$			F	loat mo (32-bit)	del)	Quantized models (1,2,3,4-bit)			
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	
DIM (1.17		0.66	1.01	0.03		1 16	0.03	0.79	1.0	0.03	
	0.07		0.03	0.06	1.14	0.03	0.05			0.11	1.13	0.03	
DIM	0.07		0.03	0.11	1.17	0.03		1.10		0.11	1.13	0.03	
				0.06	1.14	0.03				0.1	1.13	0.03	
				0.16	1.31	0.03				0.4	1.32	0.03	
SPSA (0.0	1.27	0.02	0.0	1.34	0.03	0.01	1.28	0.03	0.14	1.34	0.03	
	0.0	1.57	0.05	0.0	1.36	0.03	0.01	1.38		0.07	1.35	0.03	
				0.0	1.36	0.03				0.04	1.37	0.03	

2) Fully quantized neural networks:

BIM (gradient-based, I_{∞}) less efficient than SPSA (gradient-free, I_{∞}) \rightarrow Gradient masking

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 33 / 39

・ 同 ト ・ ヨ ト ・ ヨ ト

Direct attacks, fully-quantized models

			CIFA	AR10		SVHN							
	Float model (32-bit)			Quantized models $(1,2,3,4-bit)$			Fl	oat mo (32-bit)	del)	Quantized models $(1,2,3,4-bit)$			
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	
		0.03 0.58			0.11	0.78	0.08				0.06	1.02	0.1
CWI9	0.03		0.04	0.06	0.6	0.04	0.02	0.64	0.06	0.03	0.67	0.07	
0 112				0.09	0.55	0.04		0.04	0.00	0.02	0.66	0.07	
				0.05	0.5	0.04				0.02	0.68	0.07	
				0.56	0.1	0.05				0.82	0.07	0.05	
700	0.0	0.72	0.00	0.83	0.13	0.06	0.0	0.01	0.11	0.93	0.1	0.06	
200	0.0		0.09	0.76	0.24	0.07	0.0	0.91		0.94	0.11	0.05	
				0.73	1.09	0.14				0.93	0.38	0.1	

- 3) Fully quantized neural networks:
 - Quantization alters ZOO objective function ($\simeq 0$ or >> 1) \rightarrow ZOO fails, CWI2 succeeds (thanks to STE)
 - No effect from quantization
 - \rightarrow ZOO performs better (l_2 distortion)
- \rightarrow Gradient masking

Rémi Bernhard

34 / 39

Transfer attacks, CIFAR10

Poor transferability capacities

A A A A

35 / 39

Conclusions on transferability: Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial effect

• activation shift:

$$a_1^j(x') > a_2^j(x') \to a_1^{j,\mathbf{q}}(x') = a_2^{j,\mathbf{q}}(x')$$

• weight shift:

Weight quantization can cancel adversarial effect

36 / 39

(b) a (b) a (b) a

Conclusions on transferability: Gradient misalignment

Gradient misalignment:

Cosinus similarity values near 0 \rightarrow near orthogonal gradients Hard to transfer from/to fully binarized networks

Rémi Bernhard

Conclusion and future work

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 38 / 39

A D N A B N A B N A B N

э

Conclusion and future work

Complete study of quantized models vulnerabilities against adversarial examples, under various threat models

Take-away:

- Detection of some gradient masking issue
 → Quantization is not a robust "natural" defense when facing
 advanced attacks
- But, interestingly, gradient misalignment issues and *quantization shift phenomenon* cause poor transferability

Ongoing works:

• Develop an ensemble/quantization based defense exploiting low transferability