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Overview – Context

Neural networks: state-of-the art performances in various complex
tasks (e.g., image recognition, speech translation)
→ Classical requirements: tremendous computation power and
storage limitations

Adversarial examples: threaten networks’ integrity
→ Malicious perturbations which aim at fooling a model

Szegedy et al., Intriguing properties of Neural Networks, 2013
Goodfellow et al., Explaining and harnessing adversarial examples, 2015

Rémi Bernhard PHYSIC 2019 Quantization and Adversarial Machine Learning October 16, 2019 2 / 39



Overview – Context: ubiquitous A.I.

Major trend: Massive efforts for models deployment and embedded
ML-systems
→ Mobile phones, Internet of things, . . .

Major constraints: Energy/Memory/Precision depending on the
platform (from typical microcontroller to complex SoC):

Inference
Training and storage

Figure: STM32F4, Cortex M4

What is the impact of quantization on adversarial examples ?
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Security of Machine Learning Systems
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Security of Machine Learning systems
Threat Model

Figure: CIA threat model for a Machine Learning system
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Security of Machine Learning Systems
Striking the ML pipeline

(learned model)

Learning phase

Figure: Illustration from Goodfellow et al., Defense against the dark arts: An
overview of adversarial example security research and future research directions.,
2018
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Adversarial Examples
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Adversarial Examples
Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Figure: NIPS 2018 Adversarial Vision Challenge

Classification errors
Serious threat for critical decision systems
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Adversarial Examples
Adversarial perturbation: usually "imperceptible"... but not always!

Physical adversarial image

"Stop" "Speed Limit 45"

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual
Classification, 2018
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Adversarial Examples
Reasons of Existence

Many hypotheses (and a lot of
open questions...):

Linearity hypothesis
Boundary tilting perspective
Different manifolds
Data intrinsic dimension
Statistical assumption
Non-robust / Robust
features
. . .

See: Serban et al, Adversarial Examples – A complete Characterisation of
the Phenomenon, 2019
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Adversarial Examples
Notations

C : number of labels
Mw : target classifier
(x , y) ∈ Rd × {1, ...,C}: observation with ground-truth label
M(x) ∈ {1, ...,C}: predicted label of x by M
F (x) ∈ RC : output probabilities (softmax) for x
f (x) ∈ RC : pre-softmax (logits) for x
L(w , x , y) ∈ R: loss function of M

Pipeline:

Mw︸︷︷︸
model

: x︸︷︷︸
input

→ f (x)︸︷︷︸
logits

→ F (x)︸ ︷︷ ︸
softmax

→ M(x)︸ ︷︷ ︸
predicted

label
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Adversarial Examples
Threat model

Adversarial goal: Fool a model at inference time

From (x ,M(x)) with M(x) = y (true label), craft (x ′,M(x ′)) with

M(x ′) 6= M(x) :untargeted attack
M(x ′) = t :targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

x ′ = x + α (α: adversarial perturbation)

lp norm-bounded adversarial examples: ‖α‖p ≤ ε
→ Classical attacks: l2 or l∞ (some l0 attacks)
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Adversarial Examples
Threat model

Adversarial knowledge: What does the adversary know about the target
model M?

White-box setting: model’s architecture and parameters
→ Derivatives of L, F and f available

Black-box setting: model’s outputs only
→ no knowledge of the gradients
→ can query M, with/without restriction
→ probability outputs (F (x)) or label output (M(x))
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Adversarial Examples
Transferability

Principle:
An adversarial example crafted to fool classifier M1 may fool a classifier M2

→ For the adversary, a very powerful property

Remarks:

Inter and Intra-techniques transferability (many types of classifiers
involved: SVM, decision trees, neural networks, etc.)
Need to train a substitute model (architecture, training data, ...)
Many influence factors: model architecture, test set accuracy, depth,
...
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Adversarial Attacks
Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM)

FGSM Attack
Principle (gradient-based, one-step, l∞): linearity approximation of
L(w , x , y) around x :

x ′ = x + ε sign
(
∂L
∂x (w , x , y)

)
BIM Attack
Principle (gradient-based, iterative, l∞), a multi-step version of FGSM:

x0 = x , xn+1 = clipB∞(x ,ε) (xn + αsign(∂L
∂x (w , xn, y)))

With B∞(x , ε), the ε l∞ ball around x and α, the step size.
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Adversarial Attacks
Carlini-Wagner l2 (CWl2)

CWl2 Attack
Principle (gradient-based, iterative, l2): known as one of the most
powerful (l2) attacks.

min
α

‖α‖2 + c K (x + α, y)

s.t x + α ∈ [0, 1]

where :

K (x + α, y) = max(fM(x)(x + α)− max
j 6=M(x)

fj(x + α), 0)
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Adversarial Attacks
Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA Attack
Principle (gradient-free, iterative, l∞): a gradient-free attack

min
α

fM(x)(x + α)− max
j 6=M(x)

fj(x ′)

s.t ‖α‖∞ < ε

Method:
Adam optimizer with discrete gradient approximation:

g ′(x)i '
(g(x + δv)− g(x − δv))v−1

i
2δ

with v ∼ {−1, 1}d
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Adversarial Attacks
Zeroth Order Optimization (ZOO)

ZOO Attack
Principle (gradient-free, iterative, l2): Gradient-free softmax version of the
CWl2 attack

Method:
Adam optimizer with discrete gradient approximation:

g ′(x)i '
g(x + hei)− g(x − hei)

2h
with ei vector with i th component valued 1
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Adversarial Robustness
Gradient masking: a false Sense of Security

Principle of Gradient Masking:
Make gradients useless to craft adversarial examples

Remarks:
Defense through obscurity (Uesato, Adversarial Risk and the Dangers
of Evaluating Against Weak Attacks, 2018)
An adversary can use a substitute model to circumvent it
Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples,
openAI blog, 2017
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Neural Networks Quantization
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Neural networks quantization
Quantization post-training

Several tools have been recently proposed to map full precision pre-trained
models to quantized models for inference purpose:

Android NN API
TensorFlow Lite
ARM-NN, CMSIS-NN
STMCubeMX. A.I.

→ Coarsely quantizing (some) weights into – usually – no more than INT8.
More advanced methods propose clustering methods, information
theoretical vector quantization methods...
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Neural networks quantization
Quantization-aware training

Principle:
Learn a model with quantized weights and/or activation values during the
training process

Issues:
Manage non-differentiability issues of quantization function during
backward pass
Training can be difficult
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Neural networks quantization
Quantization-aware training

Binary Neural Networks
SoA approaches: Binary Net, Courbariaux, Bengio et al. (2015 & 2016)

weights and activations are binarized for the forward pass
wb = sign(w), ak

b = sign(ak)
Inference: only bitcount and xnor operations
Binarization is not differentiable. Trick: use of a Straight Through
Estimator : (STE, Bengio et al., 2013) at the backward pass

∂L
∂w = ∂L

∂wb

∂wb
∂w ≈

∂L
∂w

∣∣∣
w=wb

1|w |≤1
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Neural networks quantization
Quantization-aware training

Low bit-width Neural Networks

SoA approaches: Dorefa Net, Zhou et al. 2016

n-bit width quantization

Train neural networks with low-bitwidth:
1 weights
2 activations
3 gradients

STE for the backward pass
Inference: usage of a bit convolution kernel
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Neural networks quantization
Quantization-aware training

Figure: Guo et al., A Survey on Methods and Theories of Quantized Neural
Networks, 2018
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Previous Work

Massive research efforts on the topic (both attacks and defenses) with
associated benchmarks and competitions (NIPS Adversarial Vision
Challenge) but almost only on full-precision models.

Existing works bridging quantization and adversarial robustness:

Galloway, 2017 (Attacking binarized neural networks): claims natural
robustness with binarization. But, MNIST only, stochastic
quantization
Khalil, 2018 (Combinatorial attacks on binarized networks) → not
scalable on big data sets
Lin, 2019 (Efficiency Meets Robustness): FGSM attack only,
white-box setting only (no transferability analysis)
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Experiments
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Experiments
Setup

Data sets:

SVHN (73,257/26,032)
CIFAR10 (50,000/10,000)

Models:
One full-precision (32-bit float) model for each data set (same CNN
architecture as in Courbariaux et al., 2016)
Quantized models :

Activation and Weight / Weight quantization: 1,2,3,4 bits
Techniques: Courbariaux et al. (2015, 2016), Zhou et al. (2016)

Computing environment:
CPU: Intel Xeon, 2.1 GHz (12 cores)
GPU: 2x NVIDIA GTX 1080 Ti (11 Gb, 3584 CUDA cores)
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Experiments
Training results

CIFAR10 SVHN
Full-precision 0.89 0.96

Bitwidth 1 2 3 4 1 2 3 4
Full quantization 0.79 0.87 0.88 0.88 0.89 0.95 0.95 0.95

Weight quantization 0.88 0.88 0.88 0.88 0.96 0.95 0.96 0.95

Table: Models accuracy on test set

During training, quantization acts as a:
constraint
regularizer
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Experiments
Attacks and metrics

FGSM BIM CWL2 SPSA ZOO
Gradient-based X X X
Gradient-free X X

one-step X
iterative X X X X

l∞ X X X
l2 X X

Adversarial accuracy: accuracy of the model on adversarial examples

lp adversarial distortion:

∥∥x ′ − x
∥∥

p =
( m∑

i=1
|x ′i − xi |p

) 1
p
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Experiments
Direct attacks, fully-quantized models

1) Fully binarized neural networks:

Apparent robustness against FGSM and BIM attacks
No robustness increase against CWl2 attack

→ No additional robustness against gradient based attacks
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Experiments
Direct attacks, fully-quantized models

2) Fully quantized neural networks:
BIM (gradient-based, l∞) less efficient than SPSA (gradient-free, l∞)
→ Gradient masking
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Experiments
Direct attacks, fully-quantized models

3) Fully quantized neural networks:

Quantization alters ZOO objective function (' 0 or >> 1)
→ ZOO fails, CWl2 succeeds (thanks to STE)
No effect from quantization
→ ZOO performs better (l2 distortion)

→ Gradient masking
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Experiments
Transfer attacks, CIFAR10

Poor transferability capacities
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Experiments
Conclusions on transferability: Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial
effect

activation shift:
aj

1(x ′)>aj
2(x ′) → aj,q

1 (x ′)=aj,q
2 (x ′)

weight shift:
f j
1 (x ,w1)>f j

2 (x ,w1), f j
1 (x ,wq

1 )>f j
2 (x ,wq

1 )
f j
1 (x’,w1)<f j

2 (x’,w1) → f j
1 (x’,wq

1 )=f j
2 (x’,wq

1 )

Weight quantization can cancel adversarial effect
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Experiments
Conclusions on transferability: Gradient misalignment

Gradient misalignment:
Cosinus similarity values near 0 → near orthogonal gradients
Hard to transfer from/to fully binarized networks

Figure: Cos distance between gradients
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Conclusion and future work
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Conclusion and future work

Complete study of quantized models vulnerabilities against adversarial
examples, under various threat models

Take-away:

Detection of some gradient masking issue
→ Quantization is not a robust "natural" defense when facing
advanced attacks
But, interestingly, gradient misalignment issues and quantization shift
phenomenon cause poor transferability

Ongoing works:

Develop an ensemble/quantization based defense exploiting low
transferability
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