Impact of Spatial Frequency Based Constraints on Adversarial Robustness

Rémi Bernhard^{*}, Pierre-Alain Moellic^{*}, Martial Mermillod[†], Yannick Bourrier[†] Romain Cohendet[‡], Miguel Solinas[‡] Marina Reyboz[‡]

* CEA-Leti, France

[†] LPNC, CNRS, Université Grenoble Alpes, Université Savoie Mont Blanc, France [‡] Univ. Grenoble Alpes, CEA-List, France

IJCNN 2021

Impact of Frequency Constraints on Adversarial Robustness

Context: Large-scale deployment of neural network models.

Attacks against integrity:

Need for a better understanding of adversarial examples, to develop efficient defenses

Neural computation and cognitive psychology:

 \Rightarrow Importance of Low Spatial Frequency components in the human classification process

NB: LSF = Low Spatial Frequency, HSF = High Spatial Frequency

Objectives:

- Are adversarial examples a pure HSF phenomenon?
- Link between **adversarial robustness** and **frequency properties** of information processed by models
- Investigate the robustness against adversarial perturbations offered by **spatial frequency-based constraints**

Data sets: SVHN (32x32), CIFAR10 (32x32) and "Small ImageNet" (224x224)

Preliminaries

・ロト ・ 同ト ・ ヨト ・ ヨ

Notations and filtering process

Figure: First row: low-pass filtering. Bottom row: high-pass filtering. For the Fourier domain masks, white \rightarrow 1, black value \rightarrow 0.

For LSF, low *i* value \Rightarrow strong low-pass filtering. For HSF, high *i* value \Rightarrow strong high-pass filtering.

IJCNN 2021 5 / 22

Notations and filtering process

We filter the data set and train models on these filtered data:

X_i^{low,high} → filtered data with low or high-pass filtering at intensity i (LSF/HSF task)
M_i^{low,high} → Model trained on X_i^{low,high}.

Frequency properties of data and models

IJCNN 2021 7 / 22

Frequency properties of data and models Accuracy on filtered data sets

Figure: CIFAR10 and SVHN. Accuracy of a regular model on low-pass and high-pass filtered data set.

Informative features learned (regular model):

- $\bullet~\text{SVHN} \rightarrow \text{Focused}$ on LSF task
- $\bullet~\text{CIFAR10} \rightarrow \text{Spread}$ between LSF & HSF tasks

Rémi Bernhard

IJCNN 2021 8 / 22

Frequency properties of data and models Fourier spectrum of data

Figure: Magnitude of the Fourier spectrum for clean images. Center: LSF, border: HSF.

Relevant with frequency properties of the data sets:

- SVHN: Narrow spectrum (towards LSF)
- CIFAR10, Small ImageNet: Spread spectrum

Frequency properties of data and models

models trained on filtered data sets

CIFAR10, SVHN: Test set accuracy of models trained on filtered data sets.

- $\bullet~\text{CIFAR10} \rightarrow$ useful information are distributed along the spectrum
- $\bullet~\text{SVHN} \rightarrow$ predominantly concentrated in the LSF.

Rémi Bernhard

Sensitivity to HSF noise

Error rate of the model on a set of examples perturbed with noise located only in specific spatial frequencies:

Figure: CIFAR10 and SVHN. High values \rightarrow high sensitivity. Low values \rightarrow low sensitivity.

Rémi Bernhard

Impact of Frequency Constraints on Adversarial Robustness

IJCNN 2021 11 / 22

Transferability analysis

Rémi Bernhard

Impact of Frequency Constraints on Adversarial Robustness

IJCNN 2021 12 / 22

Transferability analysis Results

Figure: SVHN (left), CIFAR10 (middle), Small ImageNet (right). Transferability analysis.

1) Blue curves: Two way transferability $M \leftarrow M_i^{low}$

 \rightarrow The regular classification task and the LSF task share predominantly robust useful features.

Transferability analysis Results

Figure: SVHN (left), CIFAR10 (middle), Small ImageNet (right). Transferability analysis.

- 2) Dissimilarity between the dotted and solid curves:
 - impact of non-robust features exploiting HSF

Transferability analysis Results

Figure: SVHN (left), CIFAR10 (middle), Small ImageNet (right). Transferability analysis.

- 2) Dissimilarity between the dotted and solid curves:
 - as the high-pass filtering becomes more restrictive, the transferability $M_i^{high} \rightarrow M$ decreases.

Rémi Bernhard

Adversarial robustness of frequency constrained models

Adversarial robustness of frequency constrained models Objective

Goal:

Enforce the model to rely on useful features of the $\ensuremath{\mathsf{LSF}}/\ensuremath{\mathsf{HSF}}$ task

Frequency-constrained loss functions:

$$L_{i,j}^{freq}(\theta, x, y) = L^{E}(\theta, x, y) + \lambda_{1} \left\| f(x) - f(x_{i}^{low}) \right\|_{2}^{2} + \lambda_{2} \left\| f(x) - f(x_{j}^{high}) \right\|_{2}^{2}$$
$$L_{i}^{low}(\theta, x, y) = L^{E}(\theta, x, y) + \lambda_{1} \left\| f(x) - f(x_{i}^{low}) \right\|_{2}^{2}$$

Attack:

 I_{∞} -PGD with all sanity checks for gradient masking (false sense of security)

Rémi Bernhard

L^{low} results

SVHN: Up to 41% accuracy against PGD adversarial examples (L_6^{low}) **CIFAR10**:

- No observed robustness
- 11% accuracy against PGD adversarial examples when considering M^{low} models

 $\rightarrow L^{low}$ brings robustness if:

i) a model relies predominantly on useful features of the LSF task (shared robust features) *ii*) it shows no sensitivity to HSF noise

L^{freq} results

- **CIFAR10**: Up to 12% accuracy against PGD adversarial examples $(L_{5,3}^{freq})$
- Small Imagenet: Up to 36% accuracy against PGD adversarial examples $(L_{40,20}^{freq})$

ightarrow L^{freq} can bring robustness in the case of information spread over the frequency spectrum

Adversarial robustness of frequency constrained models Combination with Adversarial Training

Adversarial training (reminder):

$$\delta = \underset{\|\delta\|_{\infty} \leq \epsilon}{\arg \max} \quad L^{\mathcal{E}}(\theta, x + \delta, y)$$

Resulting frequency constrained loss:

$$L_{i,j}^{AT,freq}(\theta, x, y) = L_{i,j}^{freq}(\theta, x + \delta, y)$$

Results:

SVHN: + 12% accuracy on adversarial examples $(L_{10,4}^{AT,freq})$ CIFAR10: + 5% accuracy on adversarial examples $(L_6^{AT,high})$ (compared with Adversarial Training with same clean accuracy)

 \rightarrow Existing defense schemes can benefit from spatial frequency considerations

Conclusion

Rémi Bernhard

Impact of Frequency Constraints on Adversarial Robustness

IJCNN 2021 21 / 22

э

・ロト ・ 同ト ・ ヨト ・ ヨ

Contributions:

- Adversarial examples exploit features of the whole frequency spectrum
- Models relying predominantly on useful features for the LSF task, and with a non-sensitivity to HF noise show robustness when constrained to rely on useful information for the LSF task
- when developing defenses, it is crucial to take into account the intrinsic frequency properties of data

Perspectives:

Investigate the relation between frequency properties of Adversarial Training and frequency-based constraints