Luring of Transferable Adversarial Perturbations in the Black-Box Paradigm

Rémi BERNHARD (CEA LETI) Pierre-Alain MOELLIC (CEA LETI) Jean-Max DUTERTRE (MSE)

Equipe Commune de Recherche, Centre Microélectronique de Provence, Gardanne, France

GdR ISIS, January 14, 2021

Luring of Transferable Adversarial Perturbations

Context: Increasingly widespread deployment of models in a large variety of devices and services.

 \rightarrow Embedded / Cloud-based systems.

Threat: Black-box transfer attacks

 \rightarrow Defenses in the black-box context are weakly covered in the literature as compared to the numerous approaches focused on white-box attacks.

- 34

э

イロト イヨト イヨト イヨ

Main idea: Use a deception based approach

 \rightarrow Rather than try to prevent an attack, let's fool the attacker.

Implementation:

- A network $P : \mathcal{X} \to \mathcal{X}$ is pasted to M before the input layer. Augmented model: $T(x) = M \circ P(x) \ (x \in \mathcal{X}).$
- P is designed such that adversarial examples do not transfer from $M \circ P$ to M.

イロト 不得 トイヨト イヨト 二日

P is designed and trained with a twofold objective:

- **Prediction neutrality:** $T(x) = M \circ P(x) = M(x)$;
- Adversarial luring: $M \circ P(x') \neq M(x')$ Best case: x' is inefficient (i.e. M(x') = y)

Specificities:

- Training P does not require a labeled data set, and fits any already trained model
- Compatible with existing white-box and purifier-based defense methods

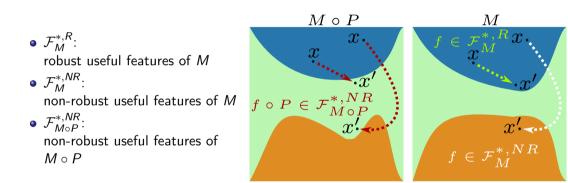
医马克氏 医马克氏 医马克氏 化丁烯

Feature-based formalism from Ilyas et al., 2019:

A model learns useful features as functions $f : \mathcal{X} \to \mathbb{R}$. For a given adversarial perturbation, a useful feature can be <u>robust</u> or <u>non-robust</u>.

Luring effect:

The adversary targets a non-robust feature of $M \circ P$, in the form of $f \circ P$, with f a useful feature for M.



э

Goal:

Force M and $M \circ P$ to rely on different concepts to perform prediction.

 \Rightarrow The same adversarial perturbation does not fool M and $M \circ P$ the same way, or fools $M \circ P$ but not M

How?

Act on the logits sequence order of $M \circ P$ relatively to M:

- *M*: "class α is predicted, class β is the second possible class"
- M ∘ P: "class α is predicted, the higher confidence given to class α, the smaller confidence given to class β"

Notations:

 $h_i^M(x)$: logits of M for input x and class i $h_i^{M \circ P}(x)$: logits of $M \circ P$ for input x and class i α : predicted class by M for input x β : second maximum value of h^M for input xc: second maximum value of $h^{M \circ P}$ for input x

Loss:

$$\mathcal{L}(x, M) = -\lambda \left(h_{\alpha}^{M \circ P}(x) - h_{\beta}^{M \circ P}(x) \right) + \max \left(0, h_{c}^{M \circ P}(x) - h_{\alpha}^{M \circ P}(x) \right)$$

• • = • • = •

Characterization of the luring effect

Characterization of the luring effect

Baselines for comparison

Isolate the *luring effect* from other factors

- Stack model: $M \circ P$ is retrained as a whole with the cross-entropy loss
- Auto model: P is an auto-encoder trained separately with binary cross-entropy loss
- C_E model: P is trained with the cross-entropy loss between the confidence score vectors M ∘ P(x) and M(x) in order to mimic the decision of the target model M

• • = • • = •

$\begin{array}{c} Characterization \ of \ the \ luring \ effect \\ {}_{Results} \end{array}$

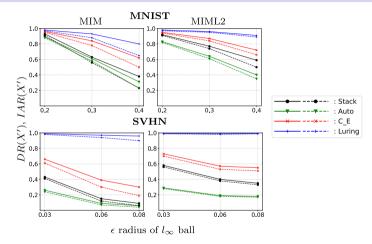


Figure: Disagreement Rate (solid line) and Inefficient Adversarial examples Rate (dashed line) for different attacks.

Rémi Bernhard

Luring of Transferable Adversarial Perturbations

GdR ISIS, January 14, 2021 12 / 19

Characterization of the luring effect

Complementary analysis

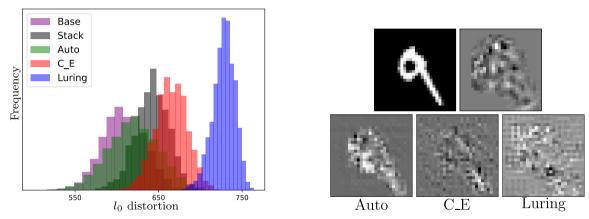


Figure: l_0 adversarial distortion for MNIST (left). Saliency maps for MNIST (right): (top) clean image and gradient of the cross-entropy loss with respect to input; (bottom) mapping gradients $\nabla_x P(x)$ for 3 augmented models.

Rémi Bernhard

Evaluation

э

Gradient-free attacks:

- SPSA: the adversary has access to the logits of $M \circ P$
- ECO: score-based attack

Gradient-based attacks:

To perform an even more strict evaluation, and to anticipate future gradient-free attacks, we report the best results obtained with state-of-the-art transferability tuned attacks (noted MIM-W).

- 31

A (1) × A (2) × A (2) ×

Table: Adversarial accuracy for $M \circ P$ (AC_{MoP}), M (AC_M), and Detection Adversarial Accuracy (DAC) for different architectures.

SVHN		Stack			Auto			C_E			LURING		
	ϵ	AC_{MoP}	AC_M	DAC	AC _{MoP}	AC_M	DAC	AC _{MoP}	AC_M	DAC	AC_{MoP}	AC_M	DAC
SPSA	0.03	0.10	0.54	0.56	0.06	0.37	0.38	0.06	0.67	0.68	0.0	0.96	0.97
	0.06	0.01	0.21	0.24	0.0	0.10	0.11	0.0	0.37	0.42	0.0	0.96	0.96
	0.08	0.0	0.13	0.15	0.0	0.06	0.06	0.0	0.23	0.28	0.0	0.94	0.96
ECO	0.03	0.06	0.42	0.44	0.14	0.48	0.49	0.18	0.66	0.68	0.20	0.97	0.98
	0.06	0.0	0.11	0.12	0.06	0.09	0.11	0.1	0.35	0.39	0.1	0.86	0.88
	0.08	0.0	0.03	0.07	0.06	0.09	0.09	0.08	0.29	0.32	0.09	0.84	0.86
MIM-W	0.03	0.04	0.32	0.35	0.01	0.20	0.21	0.03	0.41	0.45	0.11	0.81	0.87
	0.06	0.0	0.06	0.09	0.0	0.03	0.05	0.0	0.10	0.18	0.0	0.58	0.71
	0.08	0.0	0.03	0.06	0.0	0.01	0.02	0.0	0.06	0.13	0.0	0.48	0.67

Extension to ImageNet Results

Setup: ImageNet (ILSVRC2012) Model: MobileNetV2

Results:

Table: ImageNet. AC_{MoP}, AC_M and DAC for different source model architectures.

			C_E		LURING			
	ϵ	AC_{MoP}	AC_M	DAC	AC_{MoP}	AC_M	DAC	
MIM-W	4/255	0.0	0.23	0.35	0.00	0.4	0.55	
	5/255	0.0	0.15	0.25	0.00	0.28	0.43	
	6/255	0.0	0.08	0.18	0.00	0.18	0.33	

- 31

Conclusion

Rémi Bernhard

Luring of Transferable Adversarial Perturbations

GdR ISIS, January 14, 2021 18 / 19

э

Contributions:

- A conceptually innovative approach to improve the robustness of a model against transfer black-box adversarial perturbations: the *luring effect*
- Simple implementation: fits any pre-trained model, and does not require a labeled data set
- Characterization of the *luring effect* on MNIST, SVHN, CIFAR10, and extension to a black-box defense strategy
- Scalability to ImageNet

Perspectives:

Extend the *luring effect* to design a gray-box or white-box defense scheme

.