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Overview – Context

Neural networks: state-of-the art performances in various complex
tasks (e.g., image recognition, speech translation)
→ Classical requirements: tremendous computation power and
storage limitations

Adversarial examples: threaten networks’ integrity
→ Malicious perturbations which aim at fooling a model

Szegedy et al., Intriguing properties of Neural Networks, 2013
Goodfellow et al., Explaining and harnessing adversarial examples, 2015
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Overview – Context: ubiquitous A.I.

Major trend: Massive efforts for models deployment and embedded
ML-systems
→ Mobile phones, Internet of things, . . .

Major constraints: Energy/Memory/Precision depending on the
platform (from typical microcontroller to complex SoC):

Inference: keep high speed inference (no latency issue, user-friendly
apps, . . . )
Training and storage: memory footprint, duration and efficiency

e.g: advanced STM32F4, Cortex M4, 180 MHz, 384 KBytes SRAM,
2MBytes of Flash memory

What is the impact of quantization on adversarial examples ?
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Security of Machine Learning Systems
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Security of Machine Learning systems
Threat Model

Figure: CIA threat model for a Machine Learning system
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Security of Machine Learning Systems
Striking the ML pipeline

(learned model)

Learning phase

Figure: Illustration from Goodfellow et al., Defense against the dark arts: An
overview of adversarial example security research and future research directions.,
2018
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Adversarial Examples

Rémi Bernhard Quantization and Adversarial Machine Learning October 3, 2019 15 / 48



Adversarial Examples
Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Figure: NIPS 2018 Adversarial Vision Challenge

Classification errors
Serious threat for critical decision systems
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Adversarial Examples

Adversarial perturbation: usually "imperceptible"... but not always!

Physical adversarial image

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual
Classification, 2018
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Adversarial Examples
Reasons of Existence

Many hypothesis (and a lot of
open questions...):

Linearity hypothesis
Boundary tilting perspective
Different manifolds
Data intrinsic dimension
Statistical assumption
Non-robust / Robust
features
. . .

See: Serban et al, Adversarial Examples – A complete Characterisation of
the Phenomenon, 2019
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Adversarial Examples
Notations

C : number of labels
Mw : target classifier
(x , y) ∈ Rd × {1, ...,C}: observation with ground-truth label
M(x) ∈ {1, ...,C}: predicted label of x by M
F (x) ∈ RC : output probabilities (softmax) for x
f (x) ∈ RC : pre-softmax (logits) for x
L(w , x , y) ∈ R: loss function of M

Pipeline:

Mw︸︷︷︸
model

: x︸︷︷︸
input

→ f (x)︸︷︷︸
logits

→ F (x)︸ ︷︷ ︸
softmax

→ M(x)︸ ︷︷ ︸
predicted

label
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Adversarial Examples
Threat model

Adversarial goal: Fool a model at inference time

From (x ,M(x)) with M(x) = y (true label), craft (x ′,M(x ′)) with

M(x ′) 6= M(x) :untargeted attack
M(x ′) = t :targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

x ′ = x + α (α: adversarial perturbation)

lp norm-bounded adversarial examples: ‖α‖p ≤ ε
→ Classical attacks: l2 or l∞ (some l0 attacks)
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Adversarial Examples
Threat model

Adversarial knowledge: What does the adversary know about the target
model M?

White-box setting: model’s architecture and parameters
→ Derivatives of L, F and f available

Black-box setting: model’s outputs only
→ no knowledge of the gradients
→ can query M, with/without restriction
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Adversarial Examples
Transferability

Principle:
An adversarial example crafted to fool classifier M1 may fool a classifier M2

→ For the adversary, a very powerful property

Remarks:

Inter and Intra-techniques transferability (many types of classifiers
involved: SVM, decision trees, neural networks, etc.)
Need to train a substitute model (architecture, training data, ...)
Many influence factors: model architecture, test set accuracy, depth,
...

Rémi Bernhard Quantization and Adversarial Machine Learning October 3, 2019 22 / 48



Adversarial Attacks
Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM)

FGSM Attack
Principle (gradient-based, one-step, l∞): linearity approximation of
L(w , x , y) around x :

x ′ = x + ε sign
(
∂L
∂x (w , x , y)

)
BIM Attack
Principle (gradient-based, iterative, l∞), a multi-step version of FGSM:

x0 = x , xn+1 = clipB∞(x ,ε) (xn + αsign(∂L
∂x (w , xn, y)))

With B∞(x , ε), the ε l∞ ball around x and α, the step size.
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Adversarial Attacks
Carlini-Wagner l2 (CWl2)

CWl2 Attack
Principle (gradient-based, iterative, l2): known as one of the most
powerful (l2) attacks.

min
α

‖α‖2 + c K (x + α, y)

s.t x + α ∈ [0, 1]

where :

K (x + α, y) = max(fM(x)(x + α)− max
j 6=M(x)

fj(x + α), 0)
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Adversarial Attacks
Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA Attack
Principle (gradient-free, iterative, l∞): a gradient-free attack

min
α

fM(x)(x + α)− max
j 6=M(x)

fj(x ′)

s.t ‖α‖∞ < ε

Method:
Adam optimizer with discrete gradient approximation:

g ′(x)i '
(g(x + δv)− g(x − δv))v−1

i
2δ

with v ∼ {−1, 1}d
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Adversarial Attacks
Zeroth Order Optimization (ZOO)

ZOO Attack
Principle (gradient-free, iterative, l2): Gradient-free softmax version of the
CWl2 attack

Method:
Adam optimizer with discrete gradient approximation:

g ′(x)i '
g(x + hei)− g(x − hei)

2h
with ei vector with i th component valued 1
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Adversarial Attacks
Overview of defenses

Two major defense strategies:
Proactive defenses: adversarial training, noise at inference, . . .
Reactive defenses: detection mechanism, input preprocessing, . . .

→ Lack of certified and scalable defenses

→ Very hot topic in the ML community with numerous open questions:
Properly define adversarial robustness
Lay a common benchmark for comparisons
How to evaluate it? MNIST or not MNIST?
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Adversarial Attacks
Gradient masking: a false Sense of Security

Principle of Gradient Masking:
Make gradients useless to craft adversarial examples

Remarks:
Defense through obscurity (Uesato, Adversarial Risk and the Dangers
of Evaluating Against Weak Attacks, 2018)
An adversary can use a substitute model to circumvent it
Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples,
openAI blog, 2017
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Neural Networks Quantization
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Neural networks quantization
Overview

Motivation: Neural networks on embedded systems

Memory footprint:
Parameters storage

Energy cost:
Efficient inference methods


→ Quantization methods
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Neural networks quantization
Quantization post-training

Several tools have been recently proposed to map full precision pre-trained
models to quantized models for inference purpose:

Android NN API
TensorFlow Lite
ARM-NN, CMSIS-NN
STMCubeMX. A.I.

→ Coarsely quantizing (some) weights into – usually – no more than INT8.
More advanced methods propose clustering methods, information
theoretical vector quantization methods...
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Neural networks quantization
Quantization-aware training

Principle:
Learn a model with quantized weights and/or activation values during the
training process

Issues:
Manage non-differentiability issues of quantization function during
backward pass
Training can be difficult
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Neural networks quantization
Quantization-aware training

Binary Neural Networks
SoA approaches: Binary Net, Courbariaux, Bengio et al. (2015 & 2016)

weights and activations are binarized for the forward pass
wb = sign(w), ak

b = sign(ak)
Inference: only bitcount and xnor operations
Binarization is not differentiable. Trick: use of a Straight Through
Estimator : (STE, Bengio et al., 2013) at the backward pass

∂L
∂w = ∂L

∂wb

∂wb
∂w ≈

∂L
∂w

∣∣∣
w=wb

1|w |≤1
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Neural networks quantization
Quantization-aware training

Low bit-width Neural Networks

SoA approaches: Dorefa Net, Zhou et al. 2016

n-bit width quantization

Train neural networks with low-bitwidth:
1 weights
2 activations
3 gradients

STE for the backward pass
Inference: usage of a bit convolution kernel
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Neural networks quantization
Quantization-aware training

Figure: Guo et al., A Survey on Methods and Theories of Quantized Neural
Networks, 2018
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Previous Work

Massive research efforts on the topic (both attacks and defenses) with
associated benchmarks and competitions (NIPS Adversarial Vision
Challenge) but almost only on full-precision models.

Existing works:

Galloway, 2017 (Attacking binarized neural networks): claims natural
robustness with binarization. But, MNIST only, stochastic
quantization
Lin, 2019 (Efficiency Meets Robustness): FGSM attack only,
white-box setting only (no transferability analysis)
Khalil, 2018 (Combinatorial attacks on binarized networks) → not
scalable on big data sets
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Experiments
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Experiments
Setup

Data sets:

SVHN (training/test: 73,257/26,032)
CIFAR10 (training/test: 50,000/10,000)

Models:
One full-precision (32-bit float) model for each data set (same CNN
architecture as in Courbariaux et al., 2016)
Quantized models :

Activation and Weight / Weight quantization: 1,2,3,4 bits
Techniques: Courbariaux et al. (2015, 2016), Zhou et al. (2016)

Computing environment:

CPU: Intel Xeon, 2.1 GHz (12 cores)
GPU: NVIDIA GTX 1080 Ti (11 Gb, 3584 CUDA cores)
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Experiments
Attacks

1 Fast Gradient Sign Method (FGSM)
2 Basic Iterative Method (BIM): iterative FGSM
3 Carlini-Wagner l2 (CWl2)
4 SPSA: Gradient free l∞ attack
5 ZOO: Gradient-free version of CWl2

FGSM BIM CWL2 SPSA ZOO
Gradient-based X X X
Gradient-free X X

one-step X
iterative X X X X

l∞ X X X
l2 X X
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Experiments
Metrics

Adversarial accuracy: accuracy of the model on adversarial examples

lp adversarial distortion:

∥∥x ′ − x
∥∥

p =
( m∑

i=1
|x ′i − xi |p

) 1
p

CIFAR10 SVHN
Full-precision 0.89 0.96

Bitwidth 1 2 3 4 1 2 3 4
Full quantization 0.79 0.87 0.88 0.88 0.89 0.95 0.95 0.95

Weight quantization 0.88 0.88 0.88 0.88 0.96 0.95 0.96 0.95

Table: Models accuracy on test set
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Experiments
Direct attacks, fully-quantized models

1) Fully binarized neural networks:

Apparent robustness against FGSM and BIM attacks
No robustness increase against CWl2 attack

→ No additional robustness against gradient based attacks
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Experiments
Direct attacks, fully-quantized models

2) Fully quantized neural networks:
BIM (gradient-based, l∞) less efficient than SPSA (gradient-free, l∞)
→ Gradient masking
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Experiments
Direct attacks, fully-quantized models

3) Fully quantized neural networks:

Quantization alters ZOO objective function (' 0 or >> 1)
→ ZOO fails, CWl2 succeeds (thanks to STE)
No effect from quantization
→ ZOO performs better (l2 distortion)

→ Gradient masking
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Experiments
Transfer attacks, CIFAR10

Poor transferability capacities (particularly for CWl2)
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Experiments
Conclusions on transferability: Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial
effect

activation shift: aj
1(x ′)>aj

2(x ′) → aj,q
1 (x ′)=aj,q

2 (x ′)

2 different activation values are mapped to the same quantization bucket.

weight shift:

f j
1 (x ,w1)>f j

2 (x ,w1) f j
1 (x’,w1)<f j

2 (x’,w1) → f j
1 (x’,wq

1 )>f j
2 (x’,wq

1 )
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Experiments
Conclusions on transferability: Gradient misalignment

Gradient misalignment:
Cosinus similarity values near 0 → near orthogonal gradients
Hard to transfer from/to fully binarized networks

Figure: Cos distance between gradients
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Conclusion and future work
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Conclusion and future work

Take-away:

Complete study of quantized models vulnerabilities against adversarial
examples, under various threat models
Detection of some gradient masking issue
Quantization is not a robust "natural" defense when facing advanced
attacks
But, interestingly, gradient misalignment issues and quantization shift
phenomenon cause poor transferability

Future & ongoing works:

How to improve robustness of quantized models specifically?
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