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Context
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Overview – Context

Neural networks: state-of-the art performances in various complex tasks
→ Classical requirements: tremendous computation power and storage limitations

Major trend: Massive efforts for models deployment and embedded ML-systems
→ Mobile phones, Internet of things, . . .

Major constraints: Energy/Memory/Precision depending on the platform
→ From typical microcontroller to complex SoC
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Overview – Context: ubiquitous A.I.

Important threats against the Confidentiality / Integrity and Accessibility of Machine
Learning systems.
→ Significant body of works in the ML community focused on these topics.

Adversarial examples: threaten networks’ integrity
→ Malicious perturbations which aim at fooling a model

Szegedy et al., Intriguing properties of Neural Networks, 2013
Goodfellow et al., Explaining and harnessing adversarial examples, 2015

What is the impact of quantization on adversarial examples ?
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Adversarial Machine Learning
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Adversarial Examples
Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Figure: NIPS 2018 Adversarial Vision Challenge

Classification errors
Serious threat for critical decision systems
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Adversarial Examples

"Stop" "Speed Limit 45"

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, 2018
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Adversarial Examples: Notations

C : number of labels
Mw : target classifier
(x , y) ∈ Rd × {1, ...,C}: observation with ground-truth label
M(x) ∈ {1, ...,C}: predicted label of x by M
F (x) ∈ RC : output probabilities (softmax) for x
f (x) ∈ RC : pre-softmax (logits) for x
L(w , x , y) ∈ R: loss function of M

Pipeline:

Mw︸︷︷︸
model

: x︸︷︷︸
input

→ f (x)︸︷︷︸
logits

→ F (x)︸ ︷︷ ︸
softmax

→ M(x)︸ ︷︷ ︸
predicted

label
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Adversarial Examples: Threat Model

Adversarial goal: Fool a model at inference time

From (x ,M(x)) with M(x) = y (true label), craft (x ′,M(x ′)) with
M(x ′) 6= M(x) : untargeted attack
M(x ′) = t : targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

x ′ = x + α (α: adversarial perturbation)

lp norm-bounded adversarial examples: ‖α‖p ≤ ε
→ Classical attacks: l2 or l∞ (some l0 attacks)
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Adversarial Examples: Threat Model

Adversarial knowledge: What does the adversary know about the target model M?

White-box setting: model’s architecture and parameters
→ gradients available

Black-box setting: model’s outputs only
→ no knowledge of the gradients
→ can query M, with/without restriction
→ probability outputs, F (x), or label output, M(x)
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Adversarial Examples: Transferability

Principle:
An adversarial example crafted to fool classifier M1 may fool another classifier M2

→ For the adversary, a very powerful property

Remarks:
Inter and Intra-techniques transferability
Need to train a substitute model
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Adversarial Attacks: White-box setting
Gradient-based attacks

FGSM Attack
one-step, ‖α‖∞ ≤ ε as a constraint
BIM Attack
iterative version of FGSM

→ Principle: Maximization of L(θ, x , y) with respect to x , s.t. ‖α‖∞ ≤ ε

CWl2 Attack
iterative, minimization of ‖α‖2 as an objective

→ Principle: Minimization of ‖α‖2 + c K (x + α, y) with respect to α

�� ��The adversary needs to be able to compute gradients.
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Adversarial Attacks: Black-box setting
Gradient-free attacks

ZOO Attack
iterative, minimization of ‖α‖2 as an objective

→ Principle: Same as for CWl2, discrete approximation of derivative is used

SPSA Attack
iterative, ‖α‖∞ ≤ ε as a constraint

→ Principle: Minimization of fM(x)(x + α)−maxj 6=M(x) fj(x ′) with respect to α, s.t.
‖α‖∞ ≤ ε

�� ��The adversary approximates gradients.
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Adversarial Robustness: Gradient Masking
A false Sense of Security

Principle of Gradient Masking:
Make gradients useless to craft adversarial examples

Remarks:
A false sense of security (Uesato, 2018)
An adversary can use a substitute model to circumvent it.
Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples, openAI blog, 2017

Rémi Bernhard (CEA Tech/MSE) Impact of Quantization in Adversarial Machine Learning 15 / 37



Neural Networks Quantization
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Neural networks quantization

Quantization post-training

Principle: Quantize weights and/or activation values after the training phase.
Issues: Coarsely quantizing weights into – usually – no more than INT8.

Quantization-aware training

Principle: Learn a model with quantized weights and/or activation values during the training
Issues:

Manage non-differentiability issues of quantization function during backward pass
Training can be difficult
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Neural networks quantization
Quantization-aware training

Binary Net (Courbariaux, Bengio et al. 2015 & 2016):
Binarization: wb = sign(w), ak

b = sign(ak)
Inference: only bitcount and xnor operations

Dorefa Net (Zhou et al. 2016):
Quantization: n-bit width quantization of weights, activation and gradients
Inference: bit convolution kernel

→ Backward pass: usage of a Straigth Through Estimator (STE, Bengio et al., 2013)
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Previous Work

Massive research efforts on the topic (both attacks and defenses) with associated benchmarks
and competitions (NIPS Adversarial Vision Challenge) but almost only on full-precision
models.

Existing works bridging quantization and adversarial robustness:
Galloway, 2017 (Attacking binarized neural networks): claims natural robustness with
binarization. But, MNIST only, stochastic quantization
Khalil, 2018 (Combinatorial attacks on binarized networks): not scalable on big data sets
Lin, 2019 (Efficiency Meets Robustness): FGSM attack only, white-box setting only (no
transferability analysis)
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Experiments: Robustness Evaluation
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Experiments: Setup

Data sets:

SVHN (73,257/26,032)
CIFAR10 (50,000/10,000)

Models:
One full-precision (32-bit float) model for each data set (same CNN architecture as in
Courbariaux et al., 2016)
Weight quantized models: 1,2,3,4 bits
Weight and activation (fully) quantized models: 1,2,3,4 bits

Techniques: BinaryNet and DorefaNet
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Experiments: Training results

CIFAR10 SVHN
Full-precision 0.89 0.96
Bitwidth 1 2 3 4 1 2 3 4

Full quantization 0.79 0.87 0.88 0.88 0.89 0.95 0.95 0.95
Weight quantization 0.88 0.88 0.88 0.88 0.96 0.95 0.96 0.95

Table: Models accuracy on test set

During training, quantization acts as a:
constraint
regularizer
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Experiments: Attacks and metrics

FGSM BIM CWL2 SPSA ZOO
Gradient-based X X X
Gradient-free X X
one-step X
iterative X X X X

l∞ X X X
l2 X X

Adversarial accuracy: accuracy of the model on adversarial examples

lp adversarial distortion: ∥∥x ′ − x
∥∥

p =
( m∑

i=1
|x ′

i − xi |p
) 1

p
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Experiments: Fully quantized models

1) Fully binarized neural networks:
Apparent robustness against FGSM and BIM attacks
No robustness increase against CWl2 attack

→ No additional robustness against gradient based attacks
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Experiments: Gradient masking

2) Fully quantized neural networks:
BIM (gradient-based, l∞) less efficient than SPSA (gradient-free, l∞)
→ Gradient masking
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Experiments: Gradient masking

3) Fully quantized neural networks:
Quantization alters ZOO objective function (' 0 or >> 1)
→ ZOO fails, CWl2 succeeds (thanks to STE)
No effect from quantization
→ ZOO performs better (l2 distortion)

→ Gradient masking
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Experiments: Transferability

Poor transferability capacities
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Experiments: Transferability
Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial effect

activation shift:
Two activation values mapped to the same quantization bucket

weight shift:
Weight quantization can cancel adversarial effect
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Experiments: Transferability
Gradient misalignment

Gradient misalignment:

Cosinus similarity values near 0
→ near orthogonal gradients

Hard to transfer from/to fully binarized net-
works
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Experiments: Ensemble Defense
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Ensemble Defense: Motivation

Observations:
Fully quantized (1, 2, 3 and 4 bits) models:

More likely to disagree on successful adversarial examples
More likely to agree on unsucessful adversarial examples

Idea:
Ensemble-based defense to take advantage of this sieve phenomenon

Realization:
Define a proper prediction criterion considering the trade-off test set accuracy / adversarial
accuracy

→ perform prediction for the most well-classified examples and the fewest adversarial examples
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Ensemble Defense: Prediction Criterion

An input is said valid if more than m models agree.

m regulates the adjustment of the clean/adversarial accuracy trade-off.
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Ensemble Defense: Results

validm,M(X ) is the ensemble of valid inputs from X.
Then, the Prediction Rate (PR) is

PRm,M(X ) = |validm,M(X )|
|X |

For CIFAR10 (m = 4) and SVHN (m = 5), the prediction is performed for 87% of the clean
test set:

Figure: Ensemble test set accuracy
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Ensemble Defense: Results

When evaluating on the adversarial test set X’:
Defense Accuracy (d_acc): proportion of adversarial examples filtered out or unsuccessful.

Main results and observations:
Better results for SVHN than CIFAR10
Ensemble of quantized models shows better robustness to transferred adversarial examples
than all single models, if the adversarial examples are not crafted on a fully binarized
model
Interesting results for the powerful CWl2 attack:
d_accCIFAR10 = 0.53 and d_accSVHN = 0.8.
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Conclusion
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Conclusion

Complete study of quantized models vulnerabilities against adversarial examples, under various
threat models.

Take-away:
Quantization is not a robust "natural" defense when facing advanced attacks
→ Detection of some gradient masking issues
But, interestingly, gradient misalignment and quantization shift phenomenon cause poor
transferability
This enables to build a defense based on an ensemble of quantized models
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