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Overview — Context

@ Neural networks: state-of-the art performances in various complex tasks
— Classical requirements: tremendous computation power and storage limitations

@ Major trend: Massive efforts for models deployment and embedded ML-systems
— Mobile phones, Internet of things, ...

e Major constraints: Energy/Memory/Precision depending on the platform
— From typical microcontroller to complex SoC
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Overview — Context: ubiquitous A.l.

e Important threats against the Confidentiality / Integrity and Accessibility of Machine

Learning systems.
— Significant body of works in the ML community focused on these topics.

@ Adversarial examples: threaten networks' integrity
— Malicious perturbations which aim at fooling a model

o Szegedy et al., Intriguing properties of Neural Networks, 2013
e Goodfellow et al., Explaining and harnessing adversarial examples, 2015

What is the impact of quantization on adversarial examples ?
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Adversarial Examples

Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Original image Adversarial image
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(small) adversarial perturbation
created by attack

Figure: NIPS 2018 Adversarial Vision Challenge

o Classification errors
@ Serious threat for critical decision systems
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Adversarial Examples
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Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, 2018
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Adversarial Examples: Notations

C: number of labels

M,,: target classifier

(x,y) € R? x {1,..., C}: observation with ground-truth label
M(x) € {1, ..., C}: predicted label of x by M

F(x) € R¢: output probabilities (softmax) for x

f(x) € RE: pre-softmax (logits) for x

L(w,x,y) € R: loss function of M

Pipeline:
My : x — f(x) = F(x) - M(x)
model Input logits softmax predicted
label
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Adversarial Examples: Threat Model

Adversarial goal: Fool a model at inference time

From (x, M(x)) with M(x) = y (true label), craft (x’, M(x")) with
M(x") # M(x) . untargeted attack
o M(x')=t . targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

x" = x 4+ a («: adversarial perturbation)

I norm-bounded adversarial examples: [laf|, <€
— Classical attacks: h or I (some Iy attacks)
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Adversarial Examples: Threat Model

Adversarial knowledge: What does the adversary know about the target model M?

o White-box setting: model's architecture and parameters
— gradients available

@ Black-box setting: model’s outputs only
— no knowledge of the gradients
— can query M, with/without restriction
— probability outputs, F(x), or label output, M(x)
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Adversarial Examples: Transferability

Principle:
An adversarial example crafted to fool classifier My may fool another classifier M,

— For the adversary, a very powerful property

Remarks:
@ Inter and Intra-techniques transferability

@ Need to train a substitute model
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Adversarial Attacks: White-box setting

Gradient-based attacks
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FGSM Attack
one-step, ||a| ., < € as a constraint

BIM Attack
iterative version of FGSM

— Principle: Maximization of L(6, x, y) with respect to x, s.t. |la||, <€

CWI2 Attack
iterative, minimization of ||«/||, as an objective

— Principle: Minimization of ||a||, + ¢ K(x + a, y) with respect to «

[The adversary needs to be able to compute gradients.]
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Adversarial Attacks: Black-box setting

Gradient-free attacks
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Z0O Attack
iterative, minimization of ||«/||, as an objective

— Principle: Same as for CWI2, discrete approximation of derivative is used

SPSA Attack
iterative, ||a||,, < € as a constraint

— Principle: Minimization of fy)(x + a) — maxjp(x) fi(x) with respect to a, s.t.
ol <€

LThe adversary approximates gradients.}
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Adversarial Robustness: Gradient Masking

A false Sense of Security

Principle of Gradient Masking:
Make gradients useless to craft adversarial examples

Remarks:
@ A false sense of security (Uesato, 2018)
@ An adversary can use a substitute model to circumvent it.
o Gradient-free attacks, decision-based attacks, ...

(a) Defended model (b) Substitute model
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Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples, openAl blog, 2017
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Quantization post-training

Principle: Quantize weights and/or activation values after the training phase.
Issues: Coarsely quantizing weights into — usually — no more than INTS.

Quantization-aware training

Principle: Learn a model with quantized weights and/or activation values during the training
Issues:

@ Manage non-differentiability issues of quantization function during backward pass
@ Training can be difficult
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Neural networks quantization

Quantization-aware training
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Binary Net (Courbariaux, Bengio et al. 2015 & 2016):
e Binarization: wj, = sign(w), af = sign(a¥)

@ Inference: only bitcount and xnor operations

Dorefa Net (Zhou et al. 2016):
@ Quantization: n-bit width quantization of weights, activation and gradients
@ Inference: bit convolution kernel

— Backward pass: usage of a Straigth Through Estimator (STE, Bengio et al., 2013)
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Previous Work

Massive research efforts on the topic (both attacks and defenses) with associated benchmarks

and competitions (NIPS Adversarial Vision Challenge) but almost only on full-precision
models.

Existing works bridging quantization and adversarial robustness:

o Galloway, 2017 (Attacking binarized neural networks): claims natural robustness with
binarization. But, MNIST only, stochastic quantization

o Khalil, 2018 (Combinatorial attacks on binarized networks): not scalable on big data sets

e Lin, 2019 (Efficiency Meets Robustness): FGSM attack only, white-box setting only (no
transferability analysis)
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Experiments: Setup

Data sets:

o SVHN (73,257/26,032)
e CIFARI10 (50,000,10,000)

Models:

@ One full-precision (32-bit float) model for each data set (same CNN architecture as in
Courbariaux et al., 2016)

o Weight quantized models: 1,2,3,4 bits
e Weight and activation (fully) quantized models: 1,2,3,4 bits

Techniques: BinaryNet and DorefaNet
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Experiments: Training results

CIFAR10 SVHN
Full-precision 0.89 0.96
Bitwidth 1 2 3 4 1 2 3 4
Full quantization 0.79 0.87 0.88 0.88 0.89 0.95 0.95 0.95
Weight quantization | 0.88 0.88 0.88 0.88 0.96 0.95 0.96 0.95

Table: Models accuracy on test set
During training, quantization acts as a:

@ constraint

o regularizer
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Experiments: Attacks and metrics

FGSM BIM CWL2 SPSA Z00
Gradient-based v v v
Gradient-free v v
one-step v
iterative v v v v
Iso v v v
h v v

Adversarial accuracy: accuracy of the model on adversarial examples

Ip adversarial distortion:

Rémi Bernhard (CEA Tech/MSE)
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X" = x|, = D_Ix — xi
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Experiments: Fully quantized models
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CIFAR10 SVHN
Float model Binarized models Float model Binarized models
(32-bit) (1-bit) (52-bit) (1-bit)
acc 123 loo acc 123 loo acc Iy loo acc ly loo
FGSM 0.12 1.65 0.03 | 0.66 1.65 0.03]| 029 1.66 0.03 | 0.78 1.64 0.03
BIM  0.07 1.17 0.03 | 0.66 101 0.03 0.0 116 003 | 079 1.0 0.03
CWI2  0.03 0.58 0.04 | 0.11 0.78 0.08 | 0.02 0.64 0.66 | 0.06 1.02 0.1

1) Fully binarized neural networks:

@ Apparent robustness against FGSM and BIM attacks

@ No robustness increase against CWI2 attack

— No additional robustness against gradient based attacks
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Experiments: Gradient masking

CIFAR10 SVHN
Float model Quantized models Float model Quantized models
(32-bit) (1,2,3,4-bit) (52-bit) (1,2,3,4-bit)
acc Iy loo acc Iy loo acc Iy loo acc o loo
0.66 1.01 0.03 0.79 1.0 0.03
. , 0.06 114 0.03 - , 011 1.13 0.03
BIM 0.07 117 0.03 011 117 003 0.05 1.16 0.03 011 113 003
0.06 1.14 0.03 0.1 1.13 0.03
0.16 1.31 0.03 0.4 132 0.03
, 0.0 134 0.03 0.14 134 0.03
SPSA 0.0 1.37  0.03 0.0 136 003 0.01 1.38 0.03 0.07 135 0.03
0.0 1.36 0.03 0.04 1.37 0.03

2) Fully quantized neural networks:

BIM (gradient-based, /) less efficient than SPSA (gradient-free, /)

— Gradient masking

Rémi Bernhard (CEA Tech/MSE)
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Experiments: Gradient masking

CIFAR10 SVHN
Float model Quantized models Float model Quantized models
(32-bit) (1,2,8,4-bit) (92-bit) (1,2,3,4-bit)

acc ls loe acc Iy lne acc I loe acc s lne

0.11 0.78 0.08 0.06 1.02 0.1

; 0.06 0.6 0.04 0.03 0.67 0.07

7 rq y )

CWI2 0.03 058 0.04 0.09 0.55 004 0.02 0.64 0.06 0.02  0.66 007
0.05 0.6 004 0.02 0.68 0.07

0.56 0.1 005 0.82 0.07 0.05

. 0.83 0.13 0.06 0.93 0.1 0.06
Z0O0 0.0 0.72  0.09 0.76  0.24 0.07 0.0 0.91 0.11 0.94 0.11 005
0.73 1.09 014 0.93 0.38 0.1

3) Fully quantized neural networks:
e Quantization alters ZOO objective function (=~ 0 or >> 1)
— Z0O fails, CWI2 succeeds (thanks to STE)
@ No effect from quantization
— Z0OO performs better (/ distortion)

— Gradient masking
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Experiments: Transferability

Poor transferability capacities

float - 0.12 kel 0.38 0.41 0.42 0.40 0.40 0.40 0.39

w1a320.330.11 0.37 038 0.42 0.37 036 0.36

wsas 0.43 0.44 0.17 0.44 043 0.43

w30132-0.46 0.38 0.39 045 0.18 0.38 0.38
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Experiments: Transferability

Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial effect

@ activation shift:
Two activation values mapped to the same quantization bucket

e weight shift:
Weight quantization can cancel adversarial effect
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Experiments: Transferability

Gradient misalignment

Gradient misalignment: o B 2P B

float -EHdY

wiay -0.03
Cosinus similarity values near 0 wyag - 0.30 0.04 fRAY
— near orthogonal gradients wyas -023 003 0,25

w2az2 - 0.22 0.03 0.25 0.27

Hard to transfer from/to fully binarized net- wsas (028 0.05 B B2l e

WOrkS w3zazz - 0.23 0.03 0.25 0.27 0.26 0.24

wqay -0.23 0.03 0.25 0.26 0.26 0.23 0.26

w4azz - 0.23 0.03 0.24 027 0.26 0.23 0.26 0.26
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Ensemble Defense: Motivation

Observations:

Fully quantized (1, 2, 3 and 4 bits) models:
@ More likely to disagree on successful adversarial examples
@ More likely to agree on unsucessful adversarial examples

Idea:
Ensemble-based defense to take advantage of this sieve phenomenon

Realization:
Define a proper prediction criterion considering the trade-off test set accuracy / adversarial
accuracy

— perform prediction for the most well-classified examples and the fewest adversarial examples
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Ensemble Defense: Prediction Criterion

An input is said valid if more than m models agree.

-n _\
Decision rule, m = 4 N "
— = xisnot valid
3 models agree < m
-n

m regulates the adjustment of the clean/adversarial accuracy trade-off.
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Ensemble Defense: Results

validm pm(X) is the ensemble of valid inputs from X.
Then, the Prediction Rate (PR) is

|validm (X))
PRm,m(X) = |X|()

For CIFAR10 (m = 4) and SVHN (m = 5), the prediction is performed for 87% of the clean
test set:

CIFAR10 SVHN
PR accuracy PR accuracy
Test set 0.87 0.90 0.87 0.98

Figure: Ensemble test set accuracy
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Ensemble Defense: Results

When evaluating on the adversarial test set X':
Defense Accuracy (d_acc): proportion of adversarial examples filtered out or unsuccessful.

Main results and observations:
@ Better results for SVHN than CIFAR10

@ Ensemble of quantized models shows better robustness to transferred adversarial examples
than all single models, if the adversarial examples are not crafted on a fully binarized
model

@ Interesting results for the powerful CWI2 attack:
d_accCFARI0 — 053 and d_acc®VHN = 0.8.
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Conclusion

Complete study of quantized models vulnerabilities against adversarial examples, under various
threat models.

Take-away:

@ Quantization is not a robust "natural” defense when facing advanced attacks
— Detection of some gradient masking issues

o But, interestingly, gradient misalignment and quantization shift phenomenon cause poor
transferability

@ This enables to build a defense based on an ensemble of quantized models
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Thank you for your attention

Contact
Secure Architectures and Softwares, SAS
Centre de Microélectronique Provence, Gardanne (13)

@ Remi Bernhard: remi.bernhard@cea.fr
@ Pierre-Alain Moellic: pierre-alain.moellic@cea.fr

@ Jean-Max Dutertre: dutertre@emse.fr
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