Adversarial Robustness of Quantized Embedded Neural Networks

Rémi BERNHARD (CEA Tech) Pierre-Alain MOELLIC (CEA Tech) Jean-Max DUTERTRE (MSE)

Laboratoire de Sécurité des Architectures et des Systèmes, Centre CMP, Equipe Commune CEA-Tech Mines Saint-Etienne, F-13541 Gardanne France

November 21, 2019, Rennes, France

(日) (同) (臣) (臣) (臣)

Context

- **2** Adversarial Machine Learning
- **O** Neural network quantization
- Experiments
- **6** Conclusion and future work

A (10) × A (10) × A (10)

Context

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

э

(日)、(日)、(日)、(日)、(日)

- Neural networks: state-of-the art performances in various complex tasks
 - \rightarrow Classical requirements: tremendous computation power and storage limitations
- Major trend: Massive efforts for models deployment and embedded ML-systems \rightarrow Mobile phones, Internet of things, \ldots
- \bullet Major constraints: Energy/Memory/Precision depending on the platform
 - \rightarrow From typical microcontroller to complex SoC

- Important threats against the **Confidentiality** / **Integrity** and **Accessibility** of Machine Learning systems.
 - \rightarrow Significant body of works in the ML community focused on these topics.
- Adversarial examples: threaten networks' integrity
 - \rightarrow Malicious perturbations which aim at fooling a model
 - Szegedy et al., Intriguing properties of Neural Networks, 2013
 - Goodfellow et al., Explaining and harnessing adversarial examples, 2015

What is the impact of quantization on adversarial examples ?

Adversarial Machine Learning

イロト イヨト イヨト イ

Adversarial Examples: Attacking Integrity (at inference time)

Principle: Craft maliciously modified examples to fool a model.

Adversarial example = Clean example + Adversarial perturbation

Figure: NIPS 2018 Adversarial Vision Challenge

- Classification errors
- Serious threat for critical decision systems

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

Adversarial Examples

Figure: Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification, 2018

Rémi Bernhard (CEA Tech/MSE)

(日)

C: number of labels M_w : target classifier $(x, y) \in \mathbb{R}^d \times \{1, ..., C\}$: observation with ground-truth label $M(x) \in \{1, ..., C\}$: predicted label of x by M $F(x) \in \mathbb{R}^C$: output probabilities (softmax) for x $f(x) \in \mathbb{R}^C$: pre-softmax (logits) for x $L(w, x, y) \in \mathbb{R}$: loss function of M

Pipeline:

Adversarial goal: Fool a model at inference time

From (x, M(x)) with M(x) = y (true label), craft (x', M(x')) with

- $M(x') \neq M(x)$: *untargeted* attack
- M(x') = t

: targeted attack towards label t

Adversarial capabilities: How much can the adversary alter x ?

 $x' = x + \alpha$ (α : adversarial perturbation)

 l_p norm-bounded adversarial examples: $\|\alpha\|_p \leq \epsilon$ \rightarrow Classical attacks: l_2 or l_{∞} (some l_0 attacks)

Adversarial knowledge: What does the adversary know about the target model M?

- White-box setting: model's architecture and parameters
 → gradients available
- Black-box setting: model's outputs only
 - \rightarrow no knowledge of the gradients
 - \rightarrow can query M, with/without restriction
 - \rightarrow probability outputs, F(x), or label output, M(x)

Principle:

An adversarial example crafted to fool classifier M_1 may fool another classifier M_2

 \rightarrow For the adversary, a very powerful property

Remarks:

- Inter and Intra-techniques transferability
- Need to train a substitute model

Adversarial Attacks: White-box setting Gradient-based attacks

FGSM Attack one-step, $\|\alpha\|_{\infty} \le \epsilon$ as a <u>constraint</u> **BIM Attack iterative** version of FGSM

 \rightarrow **Principle:** Maximization of $L(\theta, x, y)$ with respect to x, s.t. $\|\alpha\|_{\infty} \leq \epsilon$

CWI2 Attack iterative, minimization of $\|\alpha\|_2$ as an objective

 \rightarrow Principle: Minimization of $\|\alpha\|_2 + c \ \textit{K}(\textit{x} + \alpha, \textit{y})$ with respect to α

The adversary needs to be able to compute gradients.

Rémi Bernhard (CEA Tech/MSE)

Adversarial Attacks: **Black-box setting** Gradient-free attacks

ZOO Attack

iterative, minimization of $\left\|\boldsymbol{\alpha}\right\|_2$ as an objective

 \rightarrow Principle: Same as for CWI2, discrete approximation of derivative is used

SPSA Attack

iterative, $\left\| \boldsymbol{\alpha} \right\|_{\infty} \leq \epsilon$ as a constraint

→ **Principle:** Minimization of $f_{M(x)}(x + \alpha) - \max_{j \neq M(x)} f_j(x')$ with respect to α , s.t. $\|\alpha\|_{\infty} \leq \epsilon$

The adversary approximates gradients.

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

Adversarial Robustness: Gradient Masking

A false Sense of Security

Principle of Gradient Masking:

Make gradients useless to craft adversarial examples

Remarks:

- A false sense of security (Uesato, 2018)
- An adversary can use a substitute model to circumvent it.
- Gradient-free attacks, decision-based attacks, ...

Figure: Goodfellow et al., Attacking Machine Learning with Adversarial Examples, openAI blog, 2017

Neural Networks Quantization

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

• • • • • • • • • • •

Quantization post-training

Principle: Quantize weights and/or activation values <u>after</u> the training phase. **Issues**: Coarsely quantizing weights into – usually – no more than INT8.

Quantization-aware training

Principle: Learn a model with quantized weights and/or activation values \underline{during} the training **Issues**:

- Manage non-differentiability issues of quantization function during backward pass
- Training can be difficult

Neural networks quantization

Quantization-aware training

Binary Net (Courbariaux, Bengio et al. 2015 & 2016):

- Binarization: $w_b = sign(w)$, $a_b^k = sign(a^k)$
- Inference: only bitcount and xnor operations

Dorefa Net (Zhou et al. 2016):

- Quantization: *n*-bit width quantization of weights, activation and gradients
- Inference: bit convolution kernel

 \rightarrow Backward pass: usage of a Straigth Through Estimator (STE, Bengio et al., 2013)

Massive research efforts on the topic (both attacks and defenses) with associated benchmarks and competitions (*NIPS Adversarial Vision Challenge*) **but almost only on full-precision models**.

Existing works bridging quantization and adversarial robustness:

- Galloway, 2017 (*Attacking binarized neural networks*): claims natural robustness with binarization. But, MNIST only, stochastic quantization
- Khalil, 2018 (Combinatorial attacks on binarized networks): not scalable on big data sets
- Lin, 2019 (*Efficiency Meets Robustness*): FGSM attack only, white-box setting only (no transferability analysis)

Experiments: Robustness Evaluation

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

• • • • • • • • • • •

Data sets:

- SVHN (73,257/26,032)
- CIFAR10 (50,000/10,000)

Models:

- One full-precision (32-bit float) model for each data set (same CNN architecture as in Courbariaux et al., 2016)
- Weight quantized models: 1,2,3,4 bits
- Weight and activation (fully) quantized models: 1,2,3,4 bits

Techniques: BinaryNet and DorefaNet

		CIFA	R10		SVHN				
Full-precision	III-precision 0.89 0.96								
Bitwidth	1	2	3	4	1	2	3	4	
Full quantization	0.79	0.87	0.88	0.88	0.89	0.95	0.95	0.95	
Weight quantization	0.88 0.88 0.88 0.88				0.96	0.95	0.96	0.95	

Table: Models accuracy on test set

During training, quantization acts as a:

- constraint
- regularizer

	FGSM	BIM	CWL2	SPSA	ZOO
Gradient-based	\checkmark	\checkmark	\checkmark		
Gradient-free				\checkmark	\checkmark
one-step	\checkmark				
iterative		\checkmark	\checkmark	\checkmark	\checkmark
I_{∞}	\checkmark	\checkmark		\checkmark	
<i>I</i> ₂			\checkmark		\checkmark

Adversarial accuracy: accuracy of the model on adversarial examples

*I*_p adversarial **distortion**:

$$||x'-x||_{p} = \left(\sum_{i=1}^{m} |x'_{i}-x_{i}|^{p}\right)^{\frac{1}{p}}$$

	CIFAR10							SVHN					
	$ \begin{array}{c} {\rm Float\ model} \\ (32\text{-}bit) \end{array} $			Binarized models $(1-bit)$			Float model $(32\text{-}bit)$			Binarized models $(1-bit)$			
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	
FGSM	0.12	1.65	0.03	0.66	1.65	0.03	0.29	1.66	0.03	0.78	1.64	0.03	
BIM	0.07	1.17	0.03	0.66	1.01	0.03	0.05	1.16	0.03	0.79	1.0	0.03	
CW12	0.03	0.58	0.04	0.11	0.78	0.08	0.02	0.64	0.66	0.06	1.02	0.1	

1) Fully binarized neural networks:

- Apparent robustness against FGSM and BIM attacks
- No robustness increase against CWI2 attack
- \rightarrow No additional robustness against gradient based attacks

	CIFAR10							SVHN						
	$ \begin{array}{c} {\rm Float\ model} \\ (32\text{-}bit) \end{array} $			Quantized models $(1,2,3,4-bit)$			Float model $(32\text{-}bit)$			Quantized models $(1,2,3,4-bit)$				
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}		
BIM 0.07	1 17	0.03	0.66	1.01	0.03				0.79	1.0	0.03			
			0.06	1.14	0.03	0.05	1 16	0.03	0.11	1.13	0.03			
DIM	BIM 0.07 1	1.17	0.05	0.11	1.17	0.03	0.05	1.10	0.00	0.11	1.13	0.03		
				0.06	1.14	0.03				0.1	1.13	0.03		
			0.03	0.16	1.31	0.03				0.4	1.32	0.03		
SPSA 0.0	0.0	1.37		0.0	1.34	0.03	0.01	1 38	0.03	0.14	1.34	0.03		
	0.0	1.57		0.0	1.36	0.03	0.01	1.50	0.05	0.07	1.35	0.03		
			0.0	1.36	0.03				0.04	1.37	0.03			

2) Fully quantized neural networks: BIM (gradient-based, I_{∞}) less efficient than SPSA (gradient-free, I_{∞}) \rightarrow Gradient masking

Experiments: Gradient masking

	CIFAR10							SVHN						
	\mathbf{F}	oat mo (32-bit)	del	$\operatorname{Quan}_{(1,$	tized m <i>2,3,4-bi</i>	odels	Fl	oat moo (32-bit)	lel	Quant $(1,$	tized mo 2,3,4-bi	t)		
	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}	acc	l_2	l_{∞}		
CWl2	0.03	0.58	0.04	$\begin{array}{c} 0.11 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$	$0.78 \\ 0.6 \\ 0.55 \\ 0.6$	$0.08 \\ 0.04 \\ 0.04 \\ 0.04$	0.02	0.64	0.06	$\begin{array}{c} 0.06 \\ 0.03 \\ 0.02 \\ 0.02 \end{array}$	$1.02 \\ 0.67 \\ 0.66 \\ 0.68$	$\begin{array}{c} 0.1 \\ 0.07 \\ 0.07 \\ 0.07 \end{array}$		
ZOO	0.0	0.72	0.09	$0.56 \\ 0.83 \\ 0.76 \\ 0.73$	$0.1 \\ 0.13 \\ 0.24 \\ 1.09$	$0.05 \\ 0.06 \\ 0.07 \\ 0.14$	0.0	0.91	0.11	$0.82 \\ 0.93 \\ 0.94 \\ 0.93$	$0.07 \\ 0.1 \\ 0.11 \\ 0.38$	$\begin{array}{c} 0.05 \\ 0.06 \\ 0.05 \\ 0.1 \end{array}$		

- 3) Fully quantized neural networks:
 - ullet Quantization alters ZOO objective function (\simeq 0 or >> 1)
 - \rightarrow ZOO fails, CWI2 succeeds (thanks to STE)
 - No effect from quantization
 - \rightarrow ZOO performs better (I_2 distortion)
- \rightarrow Gradient masking

Experiments: Transferability

Poor transferability capacities

Rémi Bernhard (CEA Tech/MSE)

Quantization Shift Phenomenon

Quantization Shift Phenomenon: Quantization ruins the adversarial effect

activation shift:

Two activation values mapped to the same quantization bucket

• weight shift:

Weight quantization can cancel adversarial effect

Experiments: Transferability

Gradient misalignment

Gradient misalignment:

Cosinus similarity values near 0 \rightarrow near orthogonal gradients

Hard to transfer from/to fully binarized networks

Experiments: Ensemble Defense

Observations:

Fully quantized (1, 2, 3 and 4 bits) models:

- More likely to disagree on successful adversarial examples
- More likely to agree on unsucessful adversarial examples

Idea:

Ensemble-based defense to take advantage of this sieve phenomenon

Realization:

Define a proper prediction criterion considering the trade-off test set accuracy / adversarial accuracy

 \rightarrow perform prediction for the most $\underline{well\text{-}classified}$ examples and the fewest adversarial examples

An input is said *valid* if more than *m* models agree.

m regulates the adjustment of the clean/adversarial accuracy trade-off.

Ensemble Defense: Results

33 / 37

 $valid_{m,\mathcal{M}}(X)$ is the ensemble of valid inputs from X. Then, the *Prediction Rate* (**PR**) is

1

$$\mathsf{PR}_{m,\mathcal{M}}(X) = rac{|\mathit{valid}_{m,\mathcal{M}}(X)|}{|X|}$$

For CIFAR10 (m = 4) and SVHN (m = 5), the prediction is performed for 87% of the clean test set:

	CII	FAR10	SVHN					
	\mathbf{PR}	accuracy	\mathbf{PR}	accuracy				
Test set	0.87	0.90	0.87	0.98				
	Fig	gure: Ensemble test	set accuracy					
				< □ > < □ > < Ξ > <				
Bernhard (CEA Tech	/MSE)	Impact of Quantization in Adversarial Machine Learning						

When evaluating on the adversarial test set X':

Defense Accuracy (d_acc): proportion of adversarial examples filtered out or unsuccessful.

Main results and observations:

- Better results for SVHN than CIFAR10
- Ensemble of quantized models shows better robustness to transferred adversarial examples than all single models, *if* the adversarial examples are not crafted on a fully binarized model
- Interesting results for the powerful CWI2 attack:

$$d_acc^{CIFAR10} = 0.53$$
 and $d_acc^{SVHN} = 0.8$.

Conclusion

Rémi Bernhard (CEA Tech/MSE)

Impact of Quantization in Adversarial Machine Learning

35 / 37

ж

(日) (四) (三) (三) (三)

Complete study of quantized models vulnerabilities against adversarial examples, under various threat models.

Take-away:

- Quantization is not a robust "natural" defense when facing advanced attacks
 → Detection of some gradient masking issues
- But, interestingly, gradient misalignment and *quantization shift phenomenon* cause poor transferability
- This enables to build a defense based on an ensemble of quantized models

Thank you for your attention

Contact

Secure Architectures and Softwares, *SAS* Centre de Microélectronique Provence, Gardanne (13)

- Remi Bernhard: remi.bernhard@cea.fr
- Pierre-Alain Moellic: pierre-alain.moellic@cea.fr
- Jean-Max Dutertre: dutertre@emse.fr

